



# **Cullompton Eastern Distributor**

A review of the Environment Agency's existing ISIS model

# **Technical note**



Hyder Consulting (UK) Limited 2212959 Unit 3 Kew Court Pynes Hill Rydon Lane Exeter EX2 5AZ United Kingdom Tel: +44 (0)1392 374 600 Fax: +44 (0)1392 364 102 www.hyderconsulting.com



# Cullompton Eastern Distributor

# A review of the Environment Agency's existing ISIS model

### **Technical note**

| Author    | Michael Grogan and<br>Claire French | _    | <br>   |
|-----------|-------------------------------------|------|--------|
| Checker   | Yiping Chen                         | _    | <br>40 |
| Approver  | Neil Evans                          |      | <br>   |
| Report No | 5001-UA005763-UU41R                 | 8-01 | ÷      |
| Date      | 24 July 2013                        |      |        |

This report has been prepared for Devon County Council in accordance with the terms and conditions of appointment for Cullompton Eastern Distributor Flood Risk Assessment dated 14 March 2013. Hyder Consulting (UK) Limited (2212959) cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

Front cover. Upstream view of the Spratford Millstream





# CONTENTS

| 1 | Introd | duction                               | 1    |  |  |  |  |  |
|---|--------|---------------------------------------|------|--|--|--|--|--|
| 2 | ISIS   | nodel review                          |      |  |  |  |  |  |
|   | 2.1    | Background                            | 2    |  |  |  |  |  |
|   | 2.2    | Model comparison                      | 2    |  |  |  |  |  |
|   | 2.3    | Model build checks                    | 2    |  |  |  |  |  |
|   | 2.4    | Run parameters                        | 8    |  |  |  |  |  |
|   | 2.5    | Model convergence                     | 8    |  |  |  |  |  |
| 3 | Hydro  | ology update                          | 9    |  |  |  |  |  |
|   | 3.1    | Approach                              | 9    |  |  |  |  |  |
|   | 3.2    | Comparison of hydrograph shape        | . 10 |  |  |  |  |  |
|   | 3.3    | Re-running of the existing ISIS model | . 11 |  |  |  |  |  |
| 4 | Furth  | er work                               | 12   |  |  |  |  |  |

### Appendices

Appendix 1 Adopted catchment descriptor values Appendix 2 Old and new model inflows Appendix 3 Modelled peak water levels Appendix 4 Recommended improvements to the existing ISIS model

# 1 Introduction

Devon County Council plans to build a distributor road around Cullompton, Mid Devon, to ease traffic congestion and improve air quality in this historic market town. Since the route options cross the floodplain of the River Culm, the Council has commissioned Hyder Consulting (UK) Ltd. to prepare a Flood Risk Assessment (FRA) in support of the proposed road. The FRA will include detailed hydraulic modelling to assess flood risk impacts, inform selection of the preferred route option and identify flood mitigation measures.

This technical note presents the findings of a review of the Environment Agency's existing River Culm ISIS model. As set out in Hyder's project proposal, the existing model has been assumed to provide a suitable basis for the FRA model build. To confirm whether this is the case, Hyder has a carried out a number of checks on the model, including structure representation, run parameter values and convergence performance; further details are given in section 2.

Hyder has also revised the inflows to the ISIS model, based on peak flow frequency estimates provided by the Environment Agency. Details of the approach taken and the findings from this hydrology update are documented in section 3.

Overall, the existing ISIS model provides a detailed representation of the River Culm and tributaries, and, after some adjustments, runs with the updated hydrology. However, a number of improvements are needed to ensure that the model complies with latest best practice modelling standards and provides a robust basis for the FRA. These improvements are outlined in section 4.

# 2 ISIS model review

# 2.1 Background

The existing River Culm model was built by PDMM Posford Haskoning in 2002, under the Environment Agency's former Section 105 Flood Risk Mapping Framework Agreement. The model covers ten watercourses near Cullompton: the River Culm, Spratford Stream, River Ken (North), River Ken (South), Heron's Bank, St Andrew's Well Stream, Crow Green Stream, Cole Brook, Lower Cole Brook Stream, and Spratford Millstream. Figure 1 shows the watercourses modelled.

The model was constructed using a number of different channel surveys dating from the late 1990s and early 2000s:

- 1999 Halcrow Group Ltd.
- November 1999 Merrett Survey Partnership
- November 2000 Merrett Survey Partnership
- July 2001 Land and Sea Survey Company
- September 2001 Halcrow Group Ltd.

# 2.2 Model comparison

A different model (.dat) file has been created for each calibration and design event, this is not the ideal way to handle differing storms but it is acceptable. Best practice would be to have one single model and then reference different event (.ied) files in the scenario (.ief) file. This allows greater ease of adjusting the hydrology and prevents duplication of model data thus offering space savings where the model is stored.

Where different dat files are used for each calibration and design event, each of the models should be identical apart from the hydrological boundary data. To examine this, the existing ISIS models were compared using the compare tool in ISIS 3.6. This tool allows models to be compared easily side-by-side and highlights clearly any differences. No significant differences were found between the models.

# 2.3 Model build checks

### 2.3.1 Cross sections

#### Comparison of cross sections to survey

A sample of modelled cross sections and structures has been compared to the surveyed sections to ensure that the cross section data has been input correctly.

Generally, the data in the in-channel cross sections looks to be correctly represented. There are a few sections which have slots in them, this has been done for stability purposes. However, with the stability upgrades in later versions of ISIS these slots should be removed if possible.

There are differences between survey and cross section data on the floodplain where a slot has been added to the floodplain sections to allow the model to run during low flow conditions. This is discussed further later on in the report.



Figure 1. Modelled watercourses (taken from PDMM, 2002)

This map is reproduced from Ordnance Survey material with the permission of Ordnance Survey on behalf of Her Majesty's Stationery Office © Crown Copyright. Devon County Council. 100019783. [2013]

### Chainage checks

Model chainage has been checked against the surveyed chainage. Another rough check of the chainage has been performed by comparing the chainage between two known structures in the model and then measuring the distance between the two structures on OS Opensource Streetview map tiles. Through the sampled nodes and reach lengths, the chainage of the model matched the survey and the measurements on the OS tiles well.

#### Node spacing checks

The distance between model nodes relative to the slope of the channel has been checked. There are some very long distances, relative to the slope of the channel, between modelled nodes at locations throughout the model. These long distances can result in numerical instabilities occurring as ISIS attempts to calculate flow volume and velocities over the reaches between nodes. It would be best to add more interpolates to the model based on the slopes of the channels to reduce the possibility of these instabilities occurring.

The distance between nodes has also been checked in order to find areas that may be overpopulated with nodes. There are no regions of the model which are excessively overpopulated with nodes.

#### Roughness checks

The Manning's 'n' values used have been checked against guideline values from the Roughness Advisor tool in ISIS, standard hydraulics texts and modelling experience/judgement.

PDMM's (2002) report states that Manning's 'n' roughness values have been chosen based on recommendations from 'Open Channel Hydraulics' (VT Chow 1959). Based on a random sample of cross sections the Manning's 'n' values appear to be appropriate for most sections, however at the top end of the Crow Green Stream the in-channel roughness values are very high, and based on the surveyed drawings this does not seem to be appropriate (although there are no photographs available to confirm this). There are also sections which have zero roughness values for the floodplain areas. This is assumed to represent buildings, but given the distance between sections it would be more realistic to use a high roughness value to represent water having to flow around buildings rather than a zero value which results in standing water.

A detailed review of the roughness values should be undertaken, against images of the watercourses in the vicinity of sections, to ensure that all roughness values used are appropriate.

### 2.3.2 Model boundaries

The hydrological boundaries in the model have been checked to ensure that they are inputted correctly, consistently and at realistic locations.

There are 12 existing hydrological boundaries in the model. These boundaries are QT units representing the catchments upstream of the model and lateral catchments throughout the model. The lateral catchments have been entered into the model as discreet point inflows. This may be the best method for these catchments. However, it is worth determining if they could be better represented using a lateral unit to distribute the flows over a reach rather than lump them at a single inflow location.

There are also two dummy inflows onto the floodplain, these inflows have not been extracted from the model at the downstream end of the floodplain reaches. Since the dummy flows are quite high relative to the flows that can be expected in the floodplain channels, they could lead to overestimation of flood levels.

The downstream boundary of the model is represented by a stage-discharge relationship downstream of Baulk Bridge. It is not clear from PDMM's (2002) report or the model how this relationship has been derived, and this boundary should be examined in detail to determine if it is appropriate.

### 2.3.3 Structure checks

The structures represented in the model have been checked to ensure that the most appropriate ISIS units have been used and that there are valid reasons for any omitted structures.

The model was built in ISIS version 1.5, and there have since been numerous improvements and changes to how structures are represented by the software including the addition of new structure units. Therefore, the units used by PDMM (2002) may no longer be the most appropriate units for the structures modelled.

Key findings of the structure checks are as follows:

- The geometry of the structures matches that surveyed.
- At a large number of structures the surveyed sections either side are much smaller than the channel sections upstream and downstream, this can lead to inaccurate calculations of water level and flow due to ISIS interpolating between the wide and narrow sections.
- For several structures the 'p' levels in the model, representing distance of invert above upstream and downstream bed level, are inconsistent with the channel beds, this can lead to inaccurate calculations of flow and head loss through/ over the structures as well as inaccurate calculation of the switch between free and drowned flow.
- The sluices in the model need weir lengths in the units as this field has been added to the unit since the model was built.
- The invert levels of Bernoulli loss units should be checked as they do not match the surveyed levels in the sections upstream and downstream.
- Several structures do not have bypass spills. In PDMM's (2002) report, it is stated that this is because the 1 per cent annual exceedance probability (AEP) water level will not overtop the structure. However, this should be checked against updated hydrology and against larger events, and spills should be inserted into the model where necessary.
- Several culverts have no inlet or outlet unit. This should be rectified to appropriately model the entry and exit losses of the culverts.
- Irregular culverts have been used to model regular shapes. These should be modelled as the correct culvert shapes since the calculations used are specific for each shape.
- Orifice units have been used to model nearly all of the bridges. These should be examined and replaced with the appropriate bridge unit if necessary.

### 2.3.4 Floodplain representation

The methods used to represent the floodplain have been checked to ensure that they are appropriate for the local area.

The floodplain has been represented by three different methods: the methods used are extended sections, parallel channels and reservoir units.

Most of the extended sections are surveyed for their entire widths; however there are a few sections which have been extended using data from different surveys or using 1:25,000 map

contours. The sections which have been extended using 1:25,000 map contours will need to be trimmed down to their surveyed widths and re-extended using LiDAR data.

Several of the extended sections have been smoothed, these smooth sections should be removed and the survey data reinstated in these areas as floodplain storage may be over/ underestimated, leading to inaccurate results. Figure 2 shows an example of smoothed floodplain at SA0935.



Figure 2. Example of smoothed floodplain

Several extended sections have additional channels represented in the floodplain, this can lead to inaccurate modelling of water levels in the main channel as ISIS models one water level across the entire section. The floodplain channels provide additional storage at lower levels which results in the conveyance of the section being increased and the water level in the main channel being underestimated. Sections with these additional channels should be split at appropriate locations on the floodplain and modelled as parallel channels. Figure 3 shows an example of additional channels at Culm5388.





Cullompton Eastern Distributor—A review of the Environment Agency's existing ISIS model Hyder Consulting (UK) Limited-2212959

Sections of the floodplain have been modelled as parallel channels which is an appropriate method for this area, as the floodplain slopes in such a fashion that it will convey water downstream without attenuation areas interrupting it. Most of the parallel channels have slots in them and a dummy flow at the upstream end to keep the model stable, this is a valid method however the slots are very large and should be reduced in size. A knock on effect of this is that the dummy flow cannot fill the slot and, therefore, when overtopping from the main channel occurs it first goes into the slot to fill this up rather than going onto the floodplain resulting in a reduced flood level on the floodplain. The slots in the parallel channels should be resized to adequately take the dummy flow without resulting in overestimating storage. The dummy flows are not abstracted from the model at the downstream end of the parallel channels resulting in additional flow being passed forward in the system. The dummy flows in the floodplain should also be reduced to a minimum value so that they have a negligible impact on floodplain flow regimes.

The connectivity between the parallel channels and the main channels is very poor with very few connections between the channels. This should be corrected so that the parallel channels and the main channels are connected along their entire lengths.

Reservoirs have been used to represent sections of the floodplain. Three of these have been schematised using manhole data, spot level survey and cross section data.

Seven reservoirs (Spill1ds, Spill2ds, Spill3ds, RES1A, CGSpill2ds, Sp0900, ReliefRs) have a very large area, and depth has been used to represent infinite storage. From the LiDAR there are no areas which can be found that are supposed to be represented by these reservoirs. These reservoirs should be removed and the model re-schematised appropriately.

There are numerous sections within the model which glass wall and are not connected to any other form of floodplain representation. These sections should be extended or connected to another form of floodplain representation to avoid underestimating the amount of storage available and overestimating the water levels.

The lengths of a large number of lateral spills do not match the channel lengths in the river sections that they are attached to; this can lead to inaccurate calculation of flow over these spills as the model uses smaller or longer lengths of spill, relative to the channel length, than appropriate to transfer flow. Several lateral spills (MS1364LB to MS2167LB) have very low spill coefficients, these values should be re-examined and re-schematised as appropriate.

At the bypass channel between Venn Farm on the River Culm and the Spratford Stream there is a very complex flood flow interaction as there are floodplain flows coming from the north which would overtop the bypass channel and then carry on to the south. This has been modelled with the floodplain channel unbroken by the bypass channel and very limited connectivity between the two channels. This simplification should be tested to see if it adequately models flood levels and flows in the area, as it is possible that more of the floodplain flow will enter the bypass channel, and modified if it does not.

### 2.3.5 Geo-referencing information

The presence and consistency of any geo-referencing information in the model has been checked. None of the sections have geo-referencing information in them. Geo-referencing information is essential to accurately connect the 1D model to a 2D representation of the floodplain. Hyder has, therefore, added geo-referencing information to each cross-section.

### 2.3.6 General checks

#### Initial conditions

The initial conditions embedded within the model network (.dat) files themselves and steady state results files (.zzs) have been provided for each model, these files can be used as initial conditions for unsteady runs.

It is normally best practice for the base initial conditions to be imported into the model to allow easier troubleshooting of the initial conditions and to reduce both the number of files necessary to run the model and the risk of losing or incorrectly referencing files.

#### Flat spills

There are twenty six flat spills in the model, these occur when two adjacent data points in a spill have exactly the same elevation value. Having flat spills can result in numerical instability during the times when the spills are activating and de-activating. This instability manifests itself in oscillations over the spill. This is purely a numerical instability and generally has very little effect on the results, but it can sometimes cause inaccurate results to be produced. Adjusting one of the data points by 1 mm can remove this problem and stop the spill generating "noise".

#### Visualiser

An IXY visualiser file exists for each model, the IXY appears to be identical for each model. An IXY is a good way to visualise complex watercourses with multiple channels and allows easy navigation of the model.

A GXY visualise file of the model does not exist. Hyder has, therefore, created a GXY, allowing the model nodes to be set against geo-referenced mapping data and, in turn, a greater appreciation of the model node locations and how the model represents the watercourses in reality.

### 2.4 Run parameters

The model run parameters should be checked to ensure that they are within best practice guidelines and that they have not been altered beyond normal parameters to allow the model to run. The .ief files are not available so it is not possible to check the model run parameters that were used at the time of the original study. For the purposes of this assessment, it was attempted to re-run the model in the latest version of ISIS using standard default parameters, this run crashed 6.5 hours into the model run.

# 2.5 Model convergence

The model convergence and stability has been checked to ensure that the model is producing realistic outputs and that it is running realistically.

When attempting to re-run the model using standard default parameters the model became very unstable and crashed; further attempts were made to re-run the model by adjusting the model run parameters. However, the model still crashed, the reasons for the stability problem will need to be rectified. This problem is addressed further in section 3.3.

From examining the existing diagnostics (.zzd) files supplied, it can be seen that there is nonconvergence in the model results. It is not known how much the non-convergence affects the results, however a large number of the areas mentioned in the .zzd file can easily be fixed by correcting some of the problems highlighted earlier in this model evaluation.

# 3 Hydrology update

# 3.1 Approach

As mentioned in section 1, Hyder has revised the inflows to the ISIS model, based on peak flow frequency estimates provided by the Environment Agency. In particular, the following steps have been taken:

- Sub-catchment boundaries have been extracted from the FEH CD-ROM, digitised, and checked against OS 10k mapping and Land-Form PANORAMA data. The FEH catchment boundaries for the River Ken North and South are incorrect, with the CD-ROM showing the upper reaches of the River Ken North to drain into the River Ken South catchment. The catchment descriptors for these watercourses have, therefore, been adjusted manually.
- The catchment descriptor values adopted for each of the model inflows are given in Appendix 1. The URBEXT1990 value, which is based on urban and suburban mapping from the year 1990, has been updated using an urban expansion factor to reflect the urbanisation that has taken place during the last 23 years.
- Given the short length of the tributaries included in the ISIS model, hydrographs have been generated for their whole catchments but entered into the upstream ends of the model.
- The hydrology report from the 2002 study is not available, and it is not known how runoff from the areas between the defined catchments was represented. For the purpose of the current study, separate boundary units have been established for these intervening areas (Appendix 1, Figure A1). Catchment descriptors have been derived using the areaweighting method, based on upstream and downstream lumped catchments.
- A boundary unit has also been established for St. Georges Well Stream, a right bank tributary of the Spratford Stream, located between Heron's Bank and St Andrew's Well Stream. This watercourse was not modelled by PDMM (2002).
- The catchment descriptors for each sub-catchment have been imported into an ISIS Revitalised Flood Hydrograph boundary (ReFHBDY) unit.
- A consistent design storm, based on the catchment of the River Culm at the downstream model limit (NGR ST 01682 04945), has been imposed upon all of the ReFHBDY units. The critical storm duration of the Culm catchment at the downstream model limit is 14 hours. The tributaries of the Culm respond to rainfall faster than this, with critical storm durations of between 2 and 10 hours (Table 1). Both a 5 hour and 14 hour storm duration have, therefore, been tested herein to assess the influence of storm duration on modelling results.
- The hydrographs for each sub-catchment have been scaled to fit the peak flow frequency estimates provided by the Environment Agency.
- The Environment Agency does not have peak flows estimates available for three of the sub-catchments: Crow Green Stream, St. Andrew's Well Stream and St. Georges Well Stream. For the time being, the peak flows from the 2002 study have been adopted for the Crow Green Stream and St. Andrew's Well Stream, while the ReFH model has been used to generate peaks for the previously un-modelled St. Georges Well Stream. It is important to note that only 1 per cent AEP year flows were derived as part of the 2002 study, and an alternative method of setting peak flows for the Crow Green Stream and St. Andrew's Well Stream will, therefore, have to be adopted for the other return periods of interest. Given the permeability of these catchments (SPRHOST < 20), application of the FEH statistical method is recommended over the ReFH model.</p>

#### Table 1. Critical storm duration

| Watercourse      | Critical duration<br>(hours) | Watercourse              | Critical duration<br>(hours) |
|------------------|------------------------------|--------------------------|------------------------------|
| River Culm       | 13.7                         | Heron's Bank Stream      | 5.4                          |
| River Ken North  | 5.6                          | St. Andrew's Well Stream | 3.0                          |
| River Ken South  | 5.8                          | Crow Green Stream        | 2.5                          |
| Spratford Stream | 9.6                          | Cole Brook               | 4.2                          |

# 3.2 Comparison of hydrograph shape

The 2002 and revised inflow hydrographs, based on a 1 per cent AEP event, are presented in Appendix 2. Comparison of these plots reveals that the revised hydrographs generally have a steeper rising limb and higher peak than those from the 2002 study. A notable exception to this is Cole1750, a tributary of the Cole Brook; the revised 1 per cent AEP peak flow estimate for this sub-catchment is 20 per cent lower than that adopted in the 2002 study. However, the combined hydrographs for Cole1750 and SCole744 display the general pattern described above.

The revised hydrology also gives greater total runoff volumes than the 2002 study, with the exception of SA0935, Crow2496 and Cole1750. It is important to remember that the revised hydrographs for SA0935 and Crow2496 have been scaled to fit the peaks from the 2002 study, obscuring the impact of the hydrology update.

|                          | _                         | F     | Peak flow | (m <sup>3</sup> s⁻¹) | Total volume of runoff (m <sup>3</sup> ) |           |                |  |
|--------------------------|---------------------------|-------|-----------|----------------------|------------------------------------------|-----------|----------------|--|
| Watercourse              | Model inflow              | 2002  | Updated   | Difference (%)       | 2002                                     | Updated   | Difference (%) |  |
|                          |                           | а     | b         | (b-a)/a              | С                                        | d         | (d-c)/c        |  |
| River Culm               | Culm6173                  | 141.3 | 153.0     | 8                    | 6,978,672                                | 9,621,589 | 38             |  |
| River Ken North          | NK0889                    | 17.6  | 19.3      | 10                   | 640,456                                  | 771,265   | 20             |  |
| River Ken South          | KS1417                    | 12.7  | 14.4      | 13                   | 463,968                                  | 578,311   | 25             |  |
| Spratford Stream         | Sp3922                    | 70.2  | 77.2      | 10                   | 3,168,306                                | 4,227,342 | 33             |  |
| Heron's Bank Stream      | Heron0540                 | 13.4  | 14.4      | 8                    | 481,473                                  | 572,546   | 19             |  |
| St. Andrew's Well Stream | SA0935 <sup>a</sup>       | 2.5   | 2.5       | 0                    | 78,552                                   | 76,020    | -3             |  |
| Crow Croop Stroom        | Crow2496 <sup>a</sup>     | 4.6   | 4.6       | 0                    | 138,661                                  | 130,998   | -6             |  |
| Clow Green Stream        | URBAN_lat <sup>a, b</sup> | 0.5   | 0.5       | 0                    | 11,106                                   | 12,499    | 13             |  |
| Cole Brook tributary     | Cole1750                  | 4.0   | 3.2       | -20                  | 129,672                                  | 97,286    | -25            |  |
| Colo Brook               | SCole744                  | 6.6   | 7.7       | 16                   | 211,563                                  | 252,001   | 19             |  |
|                          | Cole combined             | 10.6  | 10.9      | 3                    | 341,235                                  | 349,287   | 2              |  |

#### Table 2. Comparison between the old and new hydrology

<sup>a</sup> As mentioned in section 3.1, the updated hydrographs for St. Andrew's Well Stream and the Crow Green Stream have been scaled to fit the peak flows from the 2002 study. Hence, there is no difference between the 2002 and updated peak flows.

<sup>b</sup> URBAN\_lat has been derived by summing URBAN2, URBAN3 and URBAN4 from the 2002 study

# 3.3 Re-running of the existing ISIS model

The Environment Agency's existing ISIS model has been re-run with the updated 1 per cent AEP inflows, for a 5 hour and 14 hour storm duration. At first, the model crashed after about an hour into the storm events. In attempt to overcome this stability problem, the following changes to the model set-up have been made:

- Replicate open channel sections have been replaced with river sections
- Interpolates have been added
- The model has been split into individual channel reaches, with each reach run separately to generate new stable initial conditions
- The individual channel reaches have then been recombined one-by-one, with initial conditions regenerated to avoid causing further instabilities
- Weir lengths have been added to sluices
- Minimum flows have been specified for Cole1750 (0.1  $\text{m}^3 \text{ s}^{-1}$ ), SA0395 (0.1  $\text{m}^3 \text{ s}^{-1}$ ) and Crow2496 (0.13  $\text{m}^3 \text{ s}^{-1}$ )
- Different run parameters have been tested in an attempt to isolate the instabilities
- Irregular culvert ST29us has been replaced with a regular culvert.

With these changes in place, the model completes a full simulation of both the 5 and 14 hour storm events, and displays reasonable convergence (Figure 4). It is worth noting that there is very little difference in peak water levels between the 5 and 14 hour storm duration (median and maximum absolute differences of 17 and 103 mm, respectively; Appendix 3). This is due to the revised hydrographs having been scaled to fit a peak. Since the peaks remain the same irrespective of storm duration, the influence that storm duration can have on modelled peak water levels is somewhat limited. For this reason, it is recommended that the FRA model is run for the 14 hour storm duration only, rather than the seven different storm durations (5, 7, 9, 11, 13, 15 and 17 hour) tested as part of the 2002 study.

Despite the updated hydrology, modelled peak water levels are also reasonably similar overall to the maximum values from the 2002 study (median absolute difference of 34 mm). There are some larger differences locally, due to the model set-up changes listed above (Appendix 3).



Cullompton Eastern Distributor—A review of the Environment Agency's existing ISIS model Hyder Consulting (UK) Limited-2212959

# 4 Further work

In order to comply with latest best practice modelling standards and ensure that the model provides a robust basis for the FRA, it is recommended that a number of improvements are made. A total of 33 improvements have been identified in sections 2 and 3 (and listed in Appendix 4 for ease of reference). However, not all of these are considered necessary for the satisfactory completion of the FRA. Moreover, some of the improvements will be addressed by the linkage of the ISIS model to a 2D representation of the floodplain and, hence, are covered by our original scope of works, while we have already addressed other improvements during the preparation of this technical note.

The improvements that we do recommend are undertaken to ensure satisfactory completion of the FRA are set out in Table 3 below. These improvements would represent additional work outside of the original scope. Our fee offer for carrying out these improvements is **£2,980 plus VAT**.

In addition to the modelling improvements, some new topographic data may need to be collected in locations where there have been topographic changes since the existing survey data were collected (e.g. desilting of the M5 flood relief channel, construction of the Tesco Superstore and the development of Millenium Way). We are liaising currently with the Highways Agency and Tesco Stores Ltd. in an attempt to obtain any existing information. Depending on the information provided by these parties, we may need to instruct a survey company to undertake additional topographic survey. We will, of course, seek Devon County Council's agreement to the survey costs, if any, prior to instructing a survey company.

# Table 3. Recommended improvements for the satisfactory completion of the FRA (Ref. relates to the full list in Appendix 4)

#### Ref. Description

| <ul> <li>The modelled sections should be extended where they suddenly reduce in width at structure</li> <li>The invert levels of Bernoulli loss units should be checked as they do not match the surveyer levels in the sections upstream and downstream</li> <li>Overtopping levels of structures should be examined and bypass spills added where necessary</li> <li>Sections which have been extended using 1:25,000 map contours will need to be trimmed down to their surveyed widths and re-extended using LiDAR data</li> <li>Extended sections which have been smoothed should have their surveyed data reinstated</li> <li>Where necessary extended sections need to be trimmed to high points and the area beyond the high points needs to be represented as parallel channels</li> <li>Seven reservoirs (Spill1ds, Spill2ds, Spill3ds, RES1A, CGSpill2ds, Sp0900, ReliefRs) need be re-schematised</li> <li>The FEH statistical method should be used to derive peak flow frequency estimates for the Crow Green Stream, St. Andrew's Well Stream and St. Georges Well Stream</li> <li>Slots in River Sections in the main channels should be removed if possible</li> <li>Manning's 'n' values should be examined, with additional information, for appropriateness a adjusted if necessary</li> <li>The stage discharge relationship at the downstream end of the model should be examined t ensure it is appropriate</li> <li>The choice of unit for culverts, bridges and orifices should be examined and altered if necessary</li> <li>Dummy flows need to be abstracted from the model and reduced to a minimum value</li> </ul> |    |                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>The invert levels of Bernoulli loss units should be checked as they do not match the surveyer levels in the sections upstream and downstream</li> <li>Overtopping levels of structures should be examined and bypass spills added where necessary</li> <li>Sections which have been extended using 1:25,000 map contours will need to be trimmed down to their surveyed widths and re-extended using LiDAR data</li> <li>Extended sections which have been smoothed should have their surveyed data reinstated</li> <li>Where necessary extended sections need to be trimmed to high points and the area beyond the high points needs to be represented as parallel channels</li> <li>Seven reservoirs (Spill1ds, Spill2ds, Spill3ds, RES1A, CGSpill2ds, Sp0900, ReliefRs) need be re-schematised</li> <li>The FEH statistical method should be used to derive peak flow frequency estimates for the Crow Green Stream, St. Andrew's Well Stream and St. Georges Well Stream</li> <li>Slots in River Sections in the main channels should be removed if possible</li> <li>Manning's 'n' values should be examined, with additional information, for appropriateness a adjusted if necessary</li> <li>The stage discharge relationship at the downstream end of the model should be examined to ensure it is appropriate</li> <li>The 'p' levels at structures in the model should be examined and altered if necessary</li> <li>The choice of unit for culverts, bridges and orifices should be examined and altered if necessary</li> <li>Dummy flows need to be abstracted from the model and reduced to a minimum value</li> </ul>    | 1  | The modelled sections should be extended where they suddenly reduce in width at structures                                                                        |
| <ul> <li>Overtopping levels of structures should be examined and bypass spills added where necessary</li> <li>Sections which have been extended using 1:25,000 map contours will need to be trimmed down to their surveyed widths and re-extended using LiDAR data</li> <li>Extended sections which have been smoothed should have their surveyed data reinstated</li> <li>Where necessary extended sections need to be trimmed to high points and the area beyond the high points needs to be represented as parallel channels</li> <li>Seven reservoirs (Spill1ds, Spill2ds, Spill3ds, RES1A, CGSpill2ds, Sp0900, ReliefRs) need be re-schematised</li> <li>The FEH statistical method should be used to derive peak flow frequency estimates for the Crow Green Stream, St. Andrew's Well Stream and St. Georges Well Stream</li> <li>Slots in River Sections in the main channels should be removed if possible</li> <li>Manning's 'n' values should be examined, with additional information, for appropriateness a adjusted if necessary</li> <li>The stage discharge relationship at the downstream end of the model should be examined t ensure it is appropriate</li> <li>The choice of unit for culverts, bridges and orifices should be examined and altered if necessary</li> <li>Dummy flows need to be abstracted from the model and reduced to a minimum value</li> </ul>                                                                                                                                                                                                                                                          | 3  | The invert levels of Bernoulli loss units should be checked as they do not match the surveyed levels in the sections upstream and downstream                      |
| <ul> <li>Sections which have been extended using 1:25,000 map contours will need to be trimmed down to their surveyed widths and re-extended using LiDAR data</li> <li>Extended sections which have been smoothed should have their surveyed data reinstated</li> <li>Where necessary extended sections need to be trimmed to high points and the area beyond the high points needs to be represented as parallel channels</li> <li>Seven reservoirs (Spill1ds, Spill2ds, Spill3ds, RES1A, CGSpill2ds, Sp0900, ReliefRs) need be re-schematised</li> <li>The FEH statistical method should be used to derive peak flow frequency estimates for the Crow Green Stream, St. Andrew's Well Stream and St. Georges Well Stream</li> <li>Slots in River Sections in the main channels should be removed if possible</li> <li>Manning's 'n' values should be examined, with additional information, for appropriateness a adjusted if necessary</li> <li>The stage discharge relationship at the downstream end of the model should be examined t ensure it is appropriate</li> <li>The choice of unit for culverts, bridges and orifices should be examined and altered if necessary</li> <li>Dummy flows need to be abstracted from the model and reduced to a minimum value</li> </ul>                                                                                                                                                                                                                                                                                                                                                               | 4  | Overtopping levels of structures should be examined and bypass spills added where<br>necessary                                                                    |
| <ul> <li>6 Extended sections which have been smoothed should have their surveyed data reinstated</li> <li>7 Where necessary extended sections need to be trimmed to high points and the area beyond the high points needs to be represented as parallel channels</li> <li>10 Seven reservoirs (Spill1ds, Spill2ds, Spill3ds, RES1A, CGSpill2ds, Sp0900, ReliefRs) need be re-schematised</li> <li>17 The FEH statistical method should be used to derive peak flow frequency estimates for the Crow Green Stream, St. Andrew's Well Stream and St. Georges Well Stream</li> <li>18 Slots in River Sections in the main channels should be removed if possible</li> <li>20 Manning's 'n' values should be examined, with additional information, for appropriateness a adjusted if necessary</li> <li>21 The stage discharge relationship at the downstream end of the model should be examined to ensure it is appropriate</li> <li>22 The 'p' levels at structures in the model should be examined and corrected where necessary</li> <li>23 The choice of unit for culverts, bridges and orifices should be examined and altered if necessary</li> <li>24 Dummy flows need to be abstracted from the model and reduced to a minimum value</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                            | 5  | Sections which have been extended using 1:25,000 map contours will need to be trimmed down to their surveyed widths and re-extended using LiDAR data              |
| <ul> <li>7 Where necessary extended sections need to be trimmed to high points and the area beyond the high points needs to be represented as parallel channels</li> <li>10 Seven reservoirs (Spill1ds, Spill2ds, Spill3ds, RES1A, CGSpill2ds, Sp0900, ReliefRs) need be re-schematised</li> <li>17 The FEH statistical method should be used to derive peak flow frequency estimates for the Crow Green Stream, St. Andrew's Well Stream and St. Georges Well Stream</li> <li>18 Slots in River Sections in the main channels should be removed if possible</li> <li>20 Manning's 'n' values should be examined, with additional information, for appropriateness a adjusted if necessary</li> <li>21 The stage discharge relationship at the downstream end of the model should be examined t ensure it is appropriate</li> <li>22 The 'p' levels at structures in the model should be examined and corrected where necessary</li> <li>23 The choice of unit for culverts, bridges and orifices should be examined and altered if necessary</li> <li>24 Dummy flows need to be abstracted from the model and reduced to a minimum value</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6  | Extended sections which have been smoothed should have their surveyed data reinstated                                                                             |
| 10       Seven reservoirs (Spill1ds, Spill2ds, Spill3ds, RES1A, CGSpill2ds, Sp0900, ReliefRs) need be re-schematised         17       The FEH statistical method should be used to derive peak flow frequency estimates for the Crow Green Stream, St. Andrew's Well Stream and St. Georges Well Stream         18       Slots in River Sections in the main channels should be removed if possible         20       Manning's 'n' values should be examined, with additional information, for appropriateness a adjusted if necessary         21       The stage discharge relationship at the downstream end of the model should be examined to ensure it is appropriate         22       The 'p' levels at structures in the model should be examined and corrected where necessary         23       The choice of unit for culverts, bridges and orifices should be examined and altered if necessary         24       Dummy flows need to be abstracted from the model and reduced to a minimum value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7  | Where necessary extended sections need to be trimmed to high points and the area beyond the high points needs to be represented as parallel channels              |
| 17       The FEH statistical method should be used to derive peak flow frequency estimates for the Crow Green Stream, St. Andrew's Well Stream and St. Georges Well Stream         18       Slots in River Sections in the main channels should be removed if possible         20       Manning's 'n' values should be examined, with additional information, for appropriateness a adjusted if necessary         21       The stage discharge relationship at the downstream end of the model should be examined to ensure it is appropriate         22       The 'p' levels at structures in the model should be examined and corrected where necessary         23       The choice of unit for culverts, bridges and orifices should be examined and altered if necessary         24       Dummy flows need to be abstracted from the model and reduced to a minimum value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 | Seven reservoirs (Spill1ds, Spill2ds, Spill3ds, RES1A, CGSpill2ds, Sp0900, ReliefRs) need to be re-schematised                                                    |
| <ul> <li>18 Slots in River Sections in the main channels should be removed if possible</li> <li>20 Manning's 'n' values should be examined, with additional information, for appropriateness a adjusted if necessary</li> <li>21 The stage discharge relationship at the downstream end of the model should be examined to ensure it is appropriate</li> <li>22 The 'p' levels at structures in the model should be examined and corrected where necessary</li> <li>23 The choice of unit for culverts, bridges and orifices should be examined and altered if necessary</li> <li>24 Dummy flows need to be abstracted from the model and reduced to a minimum value</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 | The FEH statistical method should be used to derive peak flow frequency estimates for the Crow Green Stream, St. Andrew's Well Stream and St. Georges Well Stream |
| <ul> <li>Manning's 'n' values should be examined, with additional information, for appropriateness a adjusted if necessary</li> <li>The stage discharge relationship at the downstream end of the model should be examined t ensure it is appropriate</li> <li>The 'p' levels at structures in the model should be examined and corrected where necessary</li> <li>The choice of unit for culverts, bridges and orifices should be examined and altered if necessary</li> <li>Dummy flows need to be abstracted from the model and reduced to a minimum value</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 | Slots in River Sections in the main channels should be removed if possible                                                                                        |
| <ul> <li>The stage discharge relationship at the downstream end of the model should be examined to ensure it is appropriate</li> <li>The 'p' levels at structures in the model should be examined and corrected where necessary</li> <li>The choice of unit for culverts, bridges and orifices should be examined and altered if necessary</li> <li>Dummy flows need to be abstracted from the model and reduced to a minimum value</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 | Manning's 'n' values should be examined, with additional information, for appropriateness and adjusted if necessary                                               |
| <ul> <li>The 'p' levels at structures in the model should be examined and corrected where necessary</li> <li>The choice of unit for culverts, bridges and orifices should be examined and altered if necessary</li> <li>Dummy flows need to be abstracted from the model and reduced to a minimum value</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21 | The stage discharge relationship at the downstream end of the model should be examined to ensure it is appropriate                                                |
| <ul> <li>The choice of unit for culverts, bridges and orifices should be examined and altered if necessary</li> <li>Dummy flows need to be abstracted from the model and reduced to a minimum value</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22 | The 'p' levels at structures in the model should be examined and corrected where necessary                                                                        |
| 24 Dummy flows need to be abstracted from the model and reduced to a minimum value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23 | The choice of unit for culverts, bridges and orifices should be examined and altered if necessary                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24 | Dummy flows need to be abstracted from the model and reduced to a minimum value                                                                                   |
| 25 Flat spills should be adjusted by 1 mm to reduce model non-convergence and "noise"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25 | Flat spills should be adjusted by 1 mm to reduce model non-convergence and "noise"                                                                                |

Adopted catchment descriptor values

This Page Intentionally Left Blank

#### Table A1-1. Adopted catchment descriptor values

| Model inflow | AREA   | URBEXT1990 <sup>a</sup> | SAAR <sup>b</sup> | PROPWET | BFIHOST | DPLBAR             | DPSBAR              |
|--------------|--------|-------------------------|-------------------|---------|---------|--------------------|---------------------|
| KS1417       | 7.42   | 0.000                   | 970               | 0.40    | 0.480   | 3.00 <sup>c</sup>  | 32.70               |
| Culm6173     | 128.15 | 0.002                   | 970               | 0.40    | 0.530   | 14.29 <sup>c</sup> | 74.11               |
| NK0889       | 12.13  | 0.001                   | 970               | 0.40    | 0.629   | 3.93 <sup>c</sup>  | 72.09               |
| Sp3922       | 55.57  | 0.004                   | 970               | 0.40    | 0.633   | 9.04 <sup>c</sup>  | 61.78               |
| Heron0540    | 8.47   | 0.000                   | 970               | 0.44    | 0.764   | 4.51               | 79.20               |
| SA0935       | 1.63   | 0.016                   | 970               | 0.40    | 0.832   | 1.51               | 72.30               |
| Crow2496     | 2.22   | 0.000                   | 970               | 0.44    | 0.891   | 1.46               | 114.00              |
| URBAN_lat    | 1.06   | 0.203                   | 970               | 0.38    | 0.811   | 1.03 <sup>c</sup>  | 43.40               |
| Cole1750     | 2.00   | 0.000                   | 970               | 0.42    | 0.862   | 1.69               | 102.00              |
| SCole744     | 4.46   | 0.004                   | 970               | 0.42    | 0.748   | 2.27 <sup>c</sup>  | 114.30              |
| Inter01      | 1.16   | 0.002                   | 970               | 0.40    | 0.635   | 1.09 <sup>c</sup>  | 5.96 <sup>d</sup>   |
| Inter02      | 0.53   | 0.015                   | 970               | 0.40    | 0.672   | 0.71 <sup>c</sup>  | 16.03 <sup>d</sup>  |
| Inter03      | 0.62   | 0.134                   | 970               | 0.40    | 0.720   | 0.77 <sup>c</sup>  | 35.33 <sup>d</sup>  |
| Inter04      | 1.94   | 0.027                   | 970               | 0.40    | 0.608   | 1.44 <sup>c</sup>  | 114.00 <sup>d</sup> |
| RullLeat     | 0.77   | 0.010                   | 970               | 0.40    | 0.814   | 1.77               | 86.10               |

<sup>a</sup> updated to 2013

<sup>b</sup> the same SAAR value has been adopted for all model inflows, reflecting a catchment-wide design storm; the SAAR value is based on the catchment draining to the downstream model limit

 $^{\rm c}$  calculated according to equation 7.1 of the FEH vol. 5

<sup>d</sup> estimated using LiDAR data

#### Table A1-2. Design storm parameters (based on the FEH catchment at 301650, 104900)

| Parameter                     |    | Value    |       |  |  |  |
|-------------------------------|----|----------|-------|--|--|--|
| Storm duration (hours)        |    | 5.25     | 14.25 |  |  |  |
| Time step (hours)             |    | 0.25     | 0.75  |  |  |  |
| Areal reduction factor        |    | 0.871    | 0.913 |  |  |  |
| Storm area (km <sup>2</sup> ) |    | 230.01   |       |  |  |  |
| DDF model parameters          | С  | -0.02417 |       |  |  |  |
|                               | d1 | 0.37     | 607   |  |  |  |
|                               | d2 | 0.33     | 3309  |  |  |  |
|                               | d3 | 0.33     | 3525  |  |  |  |
|                               | е  | 0.28     | 3549  |  |  |  |
|                               | f  | 2.52     | 2322  |  |  |  |
| SAAR (mm)                     |    | 970      |       |  |  |  |

#### Table A1-3. Notes on the derivation of the inflow hydrographs

| Model inflow | Comments                                                                                                                                                                    |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KS1417       | FEH catchment at 302700, 106650 minus FEH catchment at 305550, 108550                                                                                                       |
|              | Also removed a small area (1.46 km <sup>2</sup> ) draining out of the catchment - not considered necessary to adjust the other catchment descriptors to reflect this change |
|              | Hydrographs scaled to fit the peaks from the Environment Agency's Devon Hydrology Strategy (DHS) node ref. 2146                                                             |
| Culm6173     | FEH catchment at 302700, 108900 plus FEH catchment at 303700, 109300                                                                                                        |
|              | Hydrographs scaled to fit peaks from the Environment Agency's DHS node ref. 858                                                                                             |
| NK0889       | FEH catchment at 302900, 107400 plus FEH catchment at 305550, 108550                                                                                                        |
|              | Hydrographs scaled to fit peaks from the Environment Agency's DHS node ref. 2240                                                                                            |
| Sp3922       | FEH catchment at 302600, 108900 plus FEH catchment at 302650, 108950                                                                                                        |
|              | Hydrographs scaled to fit peaks from the Environment Agency's DHS node ref. 2167                                                                                            |
| Heron0540    | FEH catchment at 302500, 108800                                                                                                                                             |
|              | Hydrographs scaled to fit peaks from the Environment Agency's DHS node ref. 2963                                                                                            |
| SA0935       | FEH catchment at 302350, 107750                                                                                                                                             |
|              | The Environment Agency's DHS does not cover this watercourse – hydrographs have, therefore, been scaled to fit peaks from the 2002 study                                    |
| Crow2496     | FEH catchment at 300600, 107350                                                                                                                                             |
|              | The Environment Agency's DHS does not cover this watercourse – hydrographs have, therefore, been scaled to fit peaks from the 2002 study                                    |
| URBAN_lat    | FEH catchment at 302350, 106700 minus Crow2496                                                                                                                              |
|              | The Environment Agency's DHS does not cover this watercourse –<br>hydrographs have, therefore, been scaled to fit peaks from the 2002<br>study (Urban2 + Urban3 + Urban4)   |
| Cole1750     | FEH catchment at 301400, 106500                                                                                                                                             |
|              | Hydrographs scaled to fit peaks from the Environment Agency's DHS node ref. 2131 minus ref. 2132                                                                            |
| SCole744     | FEH catchment at 302050, 105950 minus FEH catchment at Cole1750                                                                                                             |
|              | Hydrographs scaled to fit peaks from the Environment Agency's DHS node ref. 2123 minus (refs. 2131 – 2132)                                                                  |
| Inter01      | FEH catchment at 302850, 107650 minus FEH catchment at 303700, 109300                                                                                                       |
|              | Hydrographs scaled to fit peaks from the Environment Agency's DHS                                                                                                           |

|                       | node ref. 857 minus ref. 848                                                                                                                                                                                                                        |  |  |  |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Inter02               | FEH catchment at node 302750, 107600 minus the following FEH catchments:                                                                                                                                                                            |  |  |  |  |  |  |
|                       | RullLeat                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                       | Sp3922                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                       | Heron0540                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|                       | 302700, 108900                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                       | Hydrographs scaled to fit peaks from the Environment Agency's DHS node ref. 2156 minus ref. 2163                                                                                                                                                    |  |  |  |  |  |  |
| Inter03               | FEH catchment at 302400, 106700 minus SA0935                                                                                                                                                                                                        |  |  |  |  |  |  |
|                       | Peaks derived using the ReFH model                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Inter04               | FEH catchment at node 301650, 104900 minus the following FEH catchments:                                                                                                                                                                            |  |  |  |  |  |  |
|                       | 302850, 107350                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                       | 302050, 105950                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                       | 302350, 106700                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                       | 302400, 106700                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                       | 302700, 106650                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                       | Also removed a small area (0.36 km <sup>2</sup> ) draining to the Crow Green<br>Stream; adjusted AREA, DPLBAR and DPSBAR accordingly but not the<br>other catchment descriptors – this is not considered to have a significant<br>effect on results |  |  |  |  |  |  |
|                       | Peaks derived using the ReFH model                                                                                                                                                                                                                  |  |  |  |  |  |  |
| RullLeat (St. Georges | FEH catchment at 302500, 108250                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Well Stream)          | The Environment Agency's DHS does not cover this watercourse – peaks, therefore, derived using the ReFH model                                                                                                                                       |  |  |  |  |  |  |



# Old and new model inflows

This Page Intentionally Left Blank







Crow2496

5.0 4.5 4.0 (3.5 2.5 2.0 H 1.5 0.5 0.0 0

5









10 15 Time (hours)

20

25









25







Note: the latest hydrology is based on a 14 hour storm duration, while the 2002 hydrology is based on a 15 hour storm duration

This Page Intentionally Left Blank

# Modelled peak water levels

#### Peak modelled water levels (m AOD)

|             |             | 2002 maximum | Latest h | ydrology | Diffe     | rence     |             |            | 2002 maximum | Latest h | drology | Differ    | rence     |
|-------------|-------------|--------------|----------|----------|-----------|-----------|-------------|------------|--------------|----------|---------|-----------|-----------|
| Watercourse | Node        | level        | 5 hour   | 14 hour  | 5 hour    | 14 hour   | Watercourse | Node       | level        | 5 hour   | 14 hour | 5 hour    | 14 hour   |
|             |             | (a)          | (b)      | (C)      | (b) - (a) | (c) - (a) |             |            | (a)          | (b)      | (C)     | (b) - (a) | (c) - (a) |
| RiverCulm   | Culm6173    | 61.92        | 61.95    | 61.95    | 0.03      | 0.03      | RiverCulm   | dsA373_2   | 50.78        | 50.76    | 50.78   | -0.02     | 0.00      |
| RiverCulm   | Culm5982    | 61.46        | 61.39    | 61.39    | -0.07     | -0.07     | RiverCulm   | Culm2616   | 50.78        | 50.76    | 50.78   | -0.02     | 0.00      |
| RiverCulm   | Culm5388    | 59.70        | 59.73    | 59.73    | 0.02      | 0.02      | RiverCulm   | Culm2616_1 | 50.77        | 50.75    | 50.77   | -0.02     | 0.00      |
| RiverCulm   | Culm5110u   | 58.69        | 58.63    | 58.63    | -0.06     | -0.06     | RiverCulm   | Culm2535u  | 50.77        | 50.75    | 50.77   | -0.02     | 0.00      |
| RiverCulm   | Culm5110d   | 58.69        | 58.63    | 58.63    | -0.06     | -0.06     | RiverCulm   | Culm2535d  | 50.77        | 50.75    | 50.77   | -0.02     | 0.00      |
| RiverCulm   | Culm4628    | 57.44        | 57.30    | 57.30    | -0.14     | -0.14     | RiverCulm   | Culm2490   | 50.70        | 50.66    | 50.70   | -0.03     | 0.00      |
| RiverCulm   | Culm4261    | 57.03        | 56.63    | 56.63    | -0.40     | -0.40     | RiverCulm   | Culm2490d  | 50.70        | 50.66    | 50.70   | -0.03     | 0.00      |
| RiverCulm   | Culm3950    | 56.00        | 56.12    | 56.12    | 0.12      | 0.12      | RiverCulm   | CG2B       | 50.68        | 50.65    | 50.68   | -0.03     | 0.00      |
| RiverCulm   | Culm3764    | 55.52        | 55.50    | 55.50    | -0.02     | -0.02     | RiverCulm   | Culm2490_1 | 50.60        | 50.57    | 50.60   | -0.03     | 0.00      |
| RiverCulm   | Culm3626u   | 55.19        | 55.18    | 55.19    | -0.01     | -0.01     | RiverCulm   | Culm2490_2 | 50.49        | 50.45    | 50.50   | -0.04     | 0.01      |
| RiverCulm   | Culmbp_slu  | 55.19        | 55.18    | 55.19    | -0.01     | -0.01     | RiverCulm   | Culm2490_3 | 50.39        | 50.35    | 50.41   | -0.04     | 0.01      |
| RiverCulm   | Culmbp_500  | 54.85        | 54.83    | 54.83    | -0.02     | -0.02     | RiverCulm   | Culm2213   | 50.31        | 50.27    | 50.33   | -0.04     | 0.02      |
| RiverCulm   | Culm3626d   | 55.19        | 55.18    | 55.19    | -0.01     | -0.01     | RiverCulm   | Culm2064   | 50.19        | 50.15    | 50.22   | -0.04     | 0.03      |
| RiverCulm   | Culm3546    | 55.09        | 55.08    | 55.09    | -0.01     | 0.00      | RiverCulm   | Culm1917   | 50.13        | 50.10    | 50.17   | -0.04     | 0.04      |
| RiverCulm   | Kingsmillus | 54.82        | 54.80    | 54.80    | -0.02     | -0.02     | RiverCulm   | Culm1791   | 50.10        | 50.06    | 50.14   | -0.04     | 0.04      |
| RiverCulm   | KM_lslu     | 54.82        | 54.80    | 54.80    | -0.02     | -0.02     | RiverCulm   | Culm1791_1 | 50.06        | 50.02    | 50.10   | -0.04     | 0.04      |
| RiverCulm   | KM_lsld     | 54.69        | 54.67    | 54.68    | -0.02     | -0.01     | RiverCulm   | Culm1791_2 | 50.01        | 49.97    | 50.05   | -0.04     | 0.05      |
| RiverCulm   | KM_rslu     | 54.82        | 54.80    | 54.80    | -0.02     | -0.02     | RiverCulm   | uslast     | 49.93        | 49.89    | 49.98   | -0.04     | 0.05      |
| RiverCulm   | KM_rsld     | 54.69        | 54.67    | 54.68    | -0.02     | -0.01     | RiverCulm   | lastspu    | 49.93        | 49.89    | 49.98   | -0.04     | 0.05      |
| RiverCulm   | KM_spu      | 54.82        | 54.80    | 54.80    | -0.02     | -0.02     | RiverCulm   | lastspd    | 49.35        | 49.32    | 49.38   | -0.03     | 0.04      |
| RiverCulm   | KM_spd      | 54.69        | 54.67    | 54.68    | -0.02     | -0.01     | RiverCulm   | M5LinkCulu | 49.27        | 49.34    | 49.41   | 0.07      | 0.14      |
| RiverCulm   | KM_sld      | 54.69        | 54.67    | 54.68    | -0.02     | -0.01     | RiverCulm   | M5LinkCuld | 49.93        | 49.89    | 49.98   | -0.04     | 0.05      |
| RiverCulm   | KM_weiru    | 54.68        | 54.66    | 54.67    | -0.02     | -0.01     | RiverCulm   | lastculu   | 49.93        | 49.89    | 49.98   | -0.04     | 0.05      |
| RiverCulm   | Kingsmillds | 53.86        | 53.75    | 53.75    | -0.11     | -0.10     | RiverCulm   | lastculd   | 49.35        | 49.32    | 49.38   | -0.03     | 0.04      |
| RiverCulm   | Culm3283    | 53.64        | 53.46    | 53.46    | -0.18     | -0.17     | RiverCulm   | lastbru    | 49.93        | 49.89    | 49.98   | -0.04     | 0.05      |
| RiverCulm   | Culm3060    | 53.00        | 52.98    | 52.99    | -0.02     | -0.01     | RiverCulm   | lastbrd    | 49.35        | 49.32    | 49.38   | -0.03     | 0.04      |
| RiverCulm   | Culm3026    | 50.95        | 50.92    | 50.94    | -0.02     | -0.01     | RiverCulm   | dslast     | 49.35        | 49.32    | 49.38   | -0.03     | 0.04      |
| RiverCulm   | usfarm      | 50.93        | 50.90    | 50.92    | -0.02     | -0.01     | RiverCulm   | Culm1364   | 49.21        | 49.18    | 49.26   | -0.03     | 0.05      |
| RiverCulm   | farm_bru    | 50.93        | 50.90    | 50.92    | -0.02     | -0.01     | RiverCulm   | usM5       | 49.02        | 48.99    | 49.07   | -0.03     | 0.05      |
| RiverCulm   | farm_brd    | 50.84        | 50.82    | 50.83    | -0.02     | 0.00      | RiverCulm   | dsM5       | 48.21        | 48.19    | 48.24   | -0.02     | 0.03      |
| RiverCulm   | farm_spu    | 50.93        | 50.90    | 50.92    | -0.02     | -0.01     | RiverCulm   | Culm1142   | 48.21        | 48.19    | 48.24   | -0.02     | 0.03      |
| RiverCulm   | farm_spd    | 50.84        | 50.82    | 50.83    | -0.02     | 0.00      | RiverCulm   | Culm0996   | 48.03        | 48.01    | 48.07   | -0.03     | 0.04      |
| RiverCulm   | dsfarm      | 50.84        | 50.82    | 50.83    | -0.02     | 0.00      | RiverCulm   | copy0954u  | 48.03        | 48.01    | 48.07   | -0.03     | 0.04      |
| RiverCulm   | Culm2881    | 50.82        | 50.80    | 50.82    | -0.02     | 0.00      | RiverCulm   | copy0954d  | 48.03        | 48.01    | 48.07   | -0.03     | 0.04      |
| RiverCulm   | usA373      | 50.79        | 50.78    | 50.79    | -0.02     | 0.00      | RiverCulm   | Culm0725   | 47.92        | 47.90    | 47.96   | -0.02     | 0.04      |
| RiverCulm   | dsA373      | 50.79        | 50.77    | 50.79    | -0.02     | 0.00      | RiverCulm   | Culm0506u  | 47.82        | 47.79    | 47.85   | -0.03     | 0.03      |
| RiverCulm   | dsA373_1    | 50.78        | 50.76    | 50.78    | -0.02     | 0.00      | RiverCulm   | Culm0506d  | 47.82        | 47.79    | 47.85   | -0.03     | 0.03      |

|                     |           | 2002 maximum | Latest h        | ydrology | Diffe     | rence     |                     |              | 2002 maximum | Latest h | drology | Differ    | rence     |
|---------------------|-----------|--------------|-----------------|----------|-----------|-----------|---------------------|--------------|--------------|----------|---------|-----------|-----------|
| Watercourse         | Node      | level        | 5 hour          | 14 hour  | 5 hour    | 14 hour   | Watercourse         | Node         | level        | 5 hour   | 14 hour | 5 hour    | 14 hour   |
|                     |           | (a)          | (b)             | (C)      | (b) - (a) | (c) - (a) |                     |              | (a)          | (b)      | (C)     | (b) - (a) | (c) - (a) |
| RiverCulm           | dsWood    | 47.78        | 47.74           | 47.80    | -0.03     | 0.02      | RiverCulmFloodplain | 2743FP_2     | 51.59        | 51.555   | 51.565  | -0.04     | -0.03     |
| RiverCulm           | Culm0302  | 47.71        | 47.67           | 47.72    | -0.04     | 0.02      | RiverCulmFloodplain | 2743FP_3     | 51.53        | 51.486   | 51.497  | -0.04     | -0.03     |
| RiverCulm           | Culm0259  | 47.67        | 47.62           | 47.68    | -0.04     | 0.01      | RiverCulmFloodplain | 2743FP_4     | 51.46        | 51.421   | 51.432  | -0.04     | -0.03     |
| RiverCulm           | Baulku    | 47.62        | 47.61           | 47.68    | -0.01     | 0.06      | RiverCulmFloodplain | 2743FP_5     | 51.43        | 51.39    | 51.401  | -0.04     | -0.03     |
| RiverCulm           | Baulkd    | 46.58        | 46.59           | 46.64    | 0.01      | 0.05      | RiverCulmFloodplain | 2618FP       | 51.40        | 51.36    | 51.371  | -0.04     | -0.03     |
| RiverCulm           | BBspilld  | 46.58        | 46.59           | 46.64    | 0.01      | 0.05      | RiverCulmFloodplain | Sp000spd     | 50.77        | 50.75    | 50.768  | -0.02     | 0.00      |
| RiverCulm           | Baulkds   | 46.58        | 46.59           | 46.64    | 0.01      | 0.05      | RiverCulmFloodplain | Culmbp_370   | 54.59        | 54.544   | 54.558  | -0.05     | -0.03     |
| RiverCulm           | Sect1     | 46.49        | 46.50           | 46.55    | 0.00      | 0.05      | RiverCulmFloodplain | Culmbp_273   | 54.54        | 54.481   | 54.5    | -0.06     | -0.04     |
| RiverCulm           | Sect2     | 46.43        | 46.43           | 46.48    | 0.00      | 0.05      | RiverCulmFloodplain | Culmbp_M5u   | 54.58        | 54.502   | 54.528  | -0.08     | -0.05     |
| RiverCulm           | Sect3     | 46.01        | 46.02           | 46.07    | 0.01      | 0.06      | RiverCulmFloodplain | Culmbp_M5d   | 54.59        | 54.502   | 54.529  | -0.08     | -0.06     |
| RiverCulmFloodplain | 5110FP    | 58.69        | 58.629          | 58.629   | -0.06     | -0.06     | RiverCulmFloodplain | Culmbp_Railu | 54.59        | 54.503   | 54.531  | -0.09     | -0.06     |
| RiverCulmFloodplain | 4628FP    | 57.26        | 57.312          | 57.312   | 0.05      | 0.05      | RiverCulmFloodplain | Culmbp_Raild | 54.59        | 54.503   | 54.531  | -0.09     | -0.06     |
| RiverCulmFloodplain | 4261FPr   | 56.48        | 56.578          | 56.578   | 0.10      | 0.10      | RiverCulmFloodplain | Culmbp_180   | 54.59        | 54.503   | 54.531  | -0.09     | -0.06     |
| RiverCulmFloodplain | 4261FPr_1 | 56.39        | 56.51           | 56.51    | 0.12      | 0.12      | RiverCulmFloodplain | 2H           | 54.59        | 54.503   | 54.531  | -0.09     | -0.06     |
| RiverCulmFloodplain | 4261FPr_2 | 56.28        | 56.424          | 56.424   | 0.14      | 0.14      | RiverCulmFloodplain | Culmbp_0     | 54.59        | 54.503   | 54.531  | -0.09     | -0.06     |
| RiverCulmFloodplain | ST09u     | 56.17        | 56.268          | 56.269   | 0.10      | 0.10      | SpratfordStream     | Sp3922       | 56.21        | 56.166   | 56.166  | -0.05     | -0.05     |
| RiverCulmFloodplain | ST09d     | 55.99        | 56.017          | 56.017   | 0.02      | 0.02      | SpratfordStream     | Sp3552       | 55.51        | 55.546   | 55.548  | 0.03      | 0.04      |
| RiverCulmFloodplain | 3A        | 55.23        | 55.339          | 55.342   | 0.11      | 0.12      | SpratfordStream     | Sp3309       | 55.25        | 55.275   | 55.283  | 0.03      | 0.04      |
| RiverCulmFloodplain | 3A_20     | 55.11        | 55.187          | 55.194   | 0.08      | 0.09      | SpratfordStream     | Sp2952u      | 55.00        | 55.03    | 55.045  | 0.03      | 0.04      |
| RiverCulmFloodplain | Sp2952I   | 55.00        | 55.03           | 55.045   | 0.03      | 0.04      | SpratfordStream     | Sp2952d      | 55.00        | 55.03    | 55.045  | 0.03      | 0.04      |
| RiverCulmFloodplain | 4261FP    | 56.32        | 56.414          | 56.414   | 0.09      | 0.09      | SpratfordStream     | Heronus      | 54.82        | 54.801   | 54.825  | -0.01     | 0.01      |
| RiverCulmFloodplain | 4261FP_1  | 55.99        | 55.964          | 55.964   | -0.02     | -0.02     | SpratfordStream     | Heronds      | 54.82        | 54.801   | 54.825  | -0.01     | 0.01      |
| RiverCulmFloodplain | 4261FP_2  | 55.53        | 55.517          | 55.517   | -0.02     | -0.02     | SpratfordStream     | Sp2675       | 54.73        | 54.686   | 54.712  | -0.04     | -0.01     |
| RiverCulmFloodplain | 3950FP    | 55.22        | 55.212          | 55.212   | -0.01     | -0.01     | SpratfordStream     | Sp2395       | 54.62        | 54.542   | 54.57   | -0.08     | -0.05     |
| RiverCulmFloodplain | 3857FP    | 54.88        | 54.854          | 54.857   | -0.03     | -0.03     | SpratfordStream     | Sp_2250u     | 54.59        | 54.503   | 54.531  | -0.09     | -0.06     |
| RiverCulmFloodplain | 3764FP    | 54.64        | 54.586          | 54.593   | -0.05     | -0.04     | SpratfordStream     | Sp_2250d     | 54.59        | 54.503   | 54.531  | -0.09     | -0.06     |
| RiverCulmFloodplain | 3691FP    | 54.56        | 54.493          | 54.504   | -0.06     | -0.05     | SpratfordStream     | us_split     | 54.59        | 54.497   | 54.525  | -0.09     | -0.06     |
| RiverCulmFloodplain | 3618FP    | 54.49        | 54.414          | 54.428   | -0.07     | -0.06     | SpratfordStream     | weirus       | 54.59        | 54.497   | 54.525  | -0.09     | -0.06     |
| RiverCulmFloodplain | 3546FP    | 54.34        | 54.253          | 54.266   | -0.09     | -0.07     | SpratfordStream     | weirds       | 53.52        | 53.614   | 53.636  | 0.09      | 0.12      |
| RiverCulmFloodplain | 3380FP    | 53.89        | 53.809          | 53.82    | -0.08     | -0.07     | SpratfordStream     | Sp1056       | 53.42        | 53.5     | 53.523  | 0.08      | 0.11      |
| RiverCulmFloodplain | 3214FP    | 53.26        | 53.248          | 53.253   | -0.01     | 0.00      | SpratfordStream     | Sp0684       | 53.28        | 53.345   | 53.366  | 0.07      | 0.09      |
| RiverCulmFloodplain | 3047FP    | 52.66        | 52.628          | 52.637   | -0.03     | -0.02     | SpratfordStream     | Sp0557       | 53.19        | 53.266   | 53.287  | 0.08      | 0.10      |
| RiverCulmFloodplain | 2881FP    | 52.17        | 52.129          | 52.139   | -0.04     | -0.03     | SpratfordStream     | Sp0484       | 52.94        | 53.027   | 53.047  | 0.08      | 0.10      |
| RiverCulmFloodplain | 2791FP    | 51.89        | 51.846          | 51.856   | -0.04     | -0.03     | SpratfordStream     | usLong       | 52.75        | 52.826   | 52.847  | 0.08      | 0.10      |
| RiverCulmFloodplain | A373D1    | 51.89        | 51.846          | 51.856   | -0.04     | -0.03     | SpratfordStream     | dsLong       | 52.40        | 52.45    | 52.465  | 0.05      | 0.06      |
| RiverCulmFloodplain | A373D1_1  | 51.86        | 51.82           | 51.83    | -0.04     | -0.03     | SpratfordStream     | dbr_weir     | 52.30        | 52.341   | 52.354  | 0.04      | 0.06      |
| RiverCulmFloodplain | A373D2    | 51.83        | 51.7 <u>9</u> 3 | 51.803   | -0.04     | -0.03     | SpratfordStream     | Sp0331       | 52.34        | 52.396   | 52.412  | 0.05      | 0.07      |
| RiverCulmFloodplain | 2743FP    | 51.83        | 51.793          | 51.803   | -0.04     | -0.03     | SpratfordStream     | usRail       | 52.03        | 52.077   | 52.094  | 0.05      | 0.07      |
| RiverCulmFloodplain | 2743FP_1  | 51.66        | 51.626          | 51.636   | -0.04     | -0.03     | SpratfordStream     | dsRail       | 51.26        | 51.271   | 51.281  | 0.01      | 0.02      |

|                     |            | 2002 maximum | Latest h | ydrology | Diffe     | rence     |                     |            | 2002 maximum | Latest h | /drology | Differ    | rence     |
|---------------------|------------|--------------|----------|----------|-----------|-----------|---------------------|------------|--------------|----------|----------|-----------|-----------|
| Watercourse         | Node       | level        | 5 hour   | 14 hour  | 5 hour    | 14 hour   | Watercourse         | Node       | level        | 5 hour   | 14 hour  | 5 hour    | 14 hour   |
|                     |            | (a)          | (b)      | (C)      | (b) - (a) | (c) - (a) |                     |            | (a)          | (b)      | (C)      | (b) - (a) | (c) - (a) |
| SpratfordStream     | usMway     | 51.03        | 51.034   | 51.046   | 0.00      | 0.01      | SpratfordMillstream | ST11us     | 49.27        | 49.342   | 49.412   | 0.07      | 0.14      |
| SpratfordStream     | Sp0112     | 50.98        | 50.983   | 50.996   | 0.00      | 0.01      | SpratfordMillstream | FirstBru   | 49.27        | 49.342   | 49.412   | 0.07      | 0.14      |
| SpratfordStream     | Sp0062     | 50.86        | 50.852   | 50.867   | -0.01     | 0.01      | SpratfordMillstream | FirstBrd   | 48.69        | 48.714   | 48.749   | 0.02      | 0.06      |
| SpratfordStream     | Sp000      | 50.77        | 50.75    | 50.768   | -0.02     | 0.00      | SpratfordMillstream | Firstspu   | 49.27        | 49.342   | 49.412   | 0.07      | 0.14      |
| SpratfordStream     | dbrlb_res  | 52.32        | 52.368   | 52.38    | 0.05      | 0.06      | SpratfordMillstream | Firstspd   | 48.69        | 48.714   | 48.749   | 0.02      | 0.06      |
| SpratfordStream     | 0331lb_res | 52.32        | 52.368   | 52.38    | 0.05      | 0.06      | SpratfordMillstream | ST11ds     | 48.69        | 48.714   | 48.749   | 0.02      | 0.06      |
| SpratfordStream     | 0557RBres  | 52.74        | 52.828   | 52.852   | 0.09      | 0.12      | SpratfordMillstream | ST11ds_1   | 48.37        | 48.369   | 48.417   | 0.00      | 0.05      |
| SpratfordStream     | 0484RBres  | 52.74        | 52.828   | 52.852   | 0.09      | 0.12      | SpratfordMillstream | ST11ds_2   | 48.24        | 48.226   | 48.281   | -0.02     | 0.04      |
| SpratfordStream     | Alex10     | 53.20        | 53.316   | 53.337   | 0.12      | 0.14      | SpratfordMillstream | MS023      | 48.21        | 48.191   | 48.248   | -0.02     | 0.03      |
| SpratfordStream     | Alex09     | 53.20        | 53.316   | 53.337   | 0.12      | 0.14      | SpratfordMillstream | MS023d     | 48.21        | 48.191   | 48.248   | -0.02     | 0.03      |
| SpratfordStream     | Alex08     | 53.20        | 53.316   | 53.337   | 0.12      | 0.14      | SpratfordMillstream | MS00       | 48.21        | 48.186   | 48.244   | -0.02     | 0.03      |
| SpratfordMillstream | MS2167     | 54.59        | 54.497   | 54.525   | -0.09     | -0.06     | SpratfordMillstream | RES1596    | 52.74        | 52.828   | 52.852   | 0.09      | 0.12      |
| SpratfordMillstream | MS1965     | 53.72        | 53.72    | 53.744   | 0.00      | 0.02      | SpratfordMillstream | RES1531    | 52.74        | 52.828   | 52.852   | 0.09      | 0.12      |
| SpratfordMillstream | MS1719     | 53.30        | 53.388   | 53.41    | 0.09      | 0.11      | SpratfordMillstream | RES1505    | 52.74        | 52.828   | 52.852   | 0.09      | 0.12      |
| SpratfordMillstream | ST17us     | 53.24        | 53.393   | 53.417   | 0.15      | 0.18      | SpratfordMillstream | RES1454    | 52.74        | 52.828   | 52.852   | 0.09      | 0.12      |
| SpratfordMillstream | ST17ds     | 52.92        | 52.942   | 52.966   | 0.02      | 0.05      | SpratfordMillstream | RES1364    | 52.74        | 52.828   | 52.852   | 0.09      | 0.12      |
| SpratfordMillstream | MS1531     | 52.91        | 52.928   | 52.953   | 0.02      | 0.04      | ColeBrook           | SCole744   | 63.44        | 63.444   | 63.444   | 0.00      | 0.00      |
| SpratfordMillstream | StAndus    | 52.91        | 52.925   | 52.949   | 0.02      | 0.04      | ColeBrook           | SCole744_1 | 62.51        | 62.523   | 62.523   | 0.01      | 0.01      |
| SpratfordMillstream | StAndds    | 52.91        | 52.925   | 52.949   | 0.02      | 0.04      | ColeBrook           | SCole744_2 | 61.57        | 61.567   | 61.566   | 0.00      | 0.00      |
| SpratfordMillstream | MS1454     | 52.90        | 52.918   | 52.943   | 0.02      | 0.04      | ColeBrook           | SCole744_3 | 60.59        | 60.615   | 60.615   | 0.03      | 0.03      |
| SpratfordMillstream | MS1364     | 52.86        | 52.877   | 52.899   | 0.02      | 0.04      | ColeBrook           | SCole368   | 59.67        | 59.683   | 59.683   | 0.01      | 0.01      |
| SpratfordMillstream | ST16us     | 52.83        | 52.851   | 52.873   | 0.02      | 0.04      | ColeBrook           | SCole368_1 | 58.83        | 58.858   | 58.857   | 0.03      | 0.03      |
| SpratfordMillstream | ST16ds     | 52.66        | 52.672   | 52.685   | 0.01      | 0.02      | ColeBrook           | SCole368_2 | 58.04        | 58.032   | 58.032   | -0.01     | -0.01     |
| SpratfordMillstream | ST15us     | 52.53        | 52.538   | 52.55    | 0.01      | 0.02      | ColeBrook           | SCole368_3 | 57.15        | 57.205   | 57.204   | 0.05      | 0.05      |
| SpratfordMillstream | ST15ds     | 50.69        | 50.745   | 50.739   | 0.05      | 0.04      | ColeBrook           | SCole000   | 56.57        | 56.575   | 56.574   | 0.01      | 0.00      |
| SpratfordMillstream | MS1020     | 50.53        | 50.631   | 50.625   | 0.10      | 0.09      | ColeBrook           | Cole1750   | 63.51        | 63.417   | 63.417   | -0.09     | -0.09     |
| SpratfordMillstream | MS0930     | 49.95        | 50.008   | 50.025   | 0.06      | 0.07      | ColeBrook           | Cole1750_1 | 62.39        | 62.306   | 62.306   | -0.09     | -0.09     |
| SpratfordMillstream | MS0904     | 49.93        | 49.986   | 50.004   | 0.06      | 0.08      | ColeBrook           | Cole1750_2 | 61.29        | 61.238   | 61.239   | -0.05     | -0.05     |
| SpratfordMillstream | MS0732us   | 49.77        | 49.868   | 49.887   | 0.09      | 0.11      | ColeBrook           | Cole1568   | 60.24        | 60.192   | 60.192   | -0.05     | -0.05     |
| SpratfordMillstream | MS0732ds   | 49.38        | 49.457   | 49.517   | 0.07      | 0.13      | ColeBrook           | Cole1568_1 | 59.16        | 59.071   | 59.072   | -0.09     | -0.09     |
| SpratfordMillstream | MSFP1      | 51.66        | 51.684   | 51.705   | 0.03      | 0.05      | ColeBrook           | Cole1568_2 | 58.11        | 58.015   | 58.015   | -0.09     | -0.09     |
| SpratfordMillstream | MSFP2      | 51.07        | 51.168   | 51.183   | 0.09      | 0.11      | ColeBrook           | Cole1568_3 | 57.60        | 57.489   | 57.49    | -0.11     | -0.11     |
| SpratfordMillstream | MSFP3      | 50.04        | 50.048   | 50.065   | 0.01      | 0.02      | ColeBrook           | Cole1347   | 57.42        | 57.286   | 57.286   | -0.13     | -0.13     |
| SpratfordMillstream | MSFP4      | 49.81        | 49.818   | 49.84    | 0.01      | 0.03      | ColeBrook           | Spill1us   | 57.42        | 57.286   | 57.286   | -0.13     | -0.13     |
| SpratfordMillstream | MSFP5      | 49.38        | 49.457   | 49.517   | 0.07      | 0.13      | ColeBrook           | Spill1ds   | 56.56        | 56.557   | 56.559   | -0.01     | 0.00      |
| SpratfordMillstream | StatRdus   | 52.74        | 52.828   | 52.852   | 0.09      | 0.12      | ColeBrook           | Laneus     | 57.42        | 57.286   | 57.286   | -0.13     | -0.13     |
| SpratfordMillstream | 0732ds     | 49.38        | 49.457   | 49.517   | 0.07      | 0.13      | ColeBrook           | Laneds     | 56.83        | 56.759   | 56.759   | -0.07     | -0.07     |
| SpratfordMillstream | MS0610     | 49.31        | 49.385   | 49.454   | 0.07      | 0.14      | ColeBrook           | ST31ds     | 56.83        | 56.759   | 56.759   | -0.07     | -0.07     |
| SpratfordMillstream | MS0323     | 49.28        | 49.345   | 49.415   | 0.07      | 0.14      | ColeBrook           | SColeus    | 56.57        | 56.575   | 56.574   | 0.01      | 0.00      |

|                  | 2002 maximum Latest hydrolog |       | ydrology | Difference |           |           |                  | 2002 maximum | Latest hydrology |        | Difference |           |           |
|------------------|------------------------------|-------|----------|------------|-----------|-----------|------------------|--------------|------------------|--------|------------|-----------|-----------|
| Watercourse      | Node                         | level | 5 hour   | 14 hour    | 5 hour    | 14 hour   | Watercourse      | Node         | level            | 5 hour | 14 hour    | 5 hour    | 14 hour   |
|                  |                              | (a)   | (b)      | (C)        | (b) - (a) | (c) - (a) |                  |              | (a)              | (b)    | (C)        | (b) - (a) | (c) - (a) |
| ColeBrook        | SColeds                      | 56.57 | 56.575   | 56.574     | 0.01      | 0.00      | HeronsBankStream | culvertds    | 54.82            | 54.807 | 54.833     | -0.02     | 0.01      |
| ColeBrook        | Cole1219                     | 56.30 | 56.228   | 56.228     | -0.07     | -0.07     | HeronsBankStream | spill1us     | 55.52            | 57.286 | 57.286     | 1.77      | 1.77      |
| ColeBrook        | Weirus                       | 55.70 | 54.497   | 54.525     | -1.21     | -1.18     | HeronsBankStream | spill1ds     | 54.82            | 56.557 | 56.559     | 1.73      | 1.74      |
| ColeBrook        | Weirds                       | 54.94 | 53.614   | 53.636     | -1.33     | -1.31     | HeronsBankStream | Heron0110ds  | 54.82            | 54.807 | 54.833     | -0.02     | 0.01      |
| ColeBrook        | Cole0980                     | 53.91 | 53.95    | 53.952     | 0.04      | 0.04      | HeronsBankStream | Heron0110_1  | 54.82            | 54.803 | 54.827     | -0.02     | 0.01      |
| ColeBrook        | Cole0825                     | 51.70 | 51.721   | 51.722     | 0.02      | 0.02      | HeronsBankStream | Heron0110_2  | 54.82            | 54.802 | 54.825     | -0.01     | 0.01      |
| ColeBrook        | Cole729u                     | 51.19 | 51.195   | 51.196     | 0.00      | 0.00      | HeronsBankStream | Heron0110_3  | 54.82            | 54.801 | 54.825     | -0.02     | 0.01      |
| ColeBrook        | ST30Cus                      | 51.19 | 51.195   | 51.196     | 0.00      | 0.00      | HeronsBankStream | Heron000     | 54.82            | 54.801 | 54.825     | -0.01     | 0.01      |
| ColeBrook        | ST30Cds                      | 50.72 | 50.719   | 50.72      | 0.00      | 0.00      | SouthKen         | KS1417       | 54.72            | 54.731 | 54.731     | 0.01      | 0.01      |
| ColeBrook        | Spill2us                     | 51.19 | 51.195   | 51.196     | 0.00      | 0.00      | SouthKen         | KS1417_1     | 54.18            | 54.191 | 54.191     | 0.01      | 0.01      |
| ColeBrook        | Spill2ds                     | 50.47 | 50.466   | 50.467     | 0.00      | 0.00      | SouthKen         | KS1351       | 53.71            | 53.729 | 53.729     | 0.02      | 0.02      |
| ColeBrook        | Cole729d                     | 50.72 | 50.719   | 50.72      | 0.00      | 0.00      | SouthKen         | KS1351_1     | 53.35            | 53.375 | 53.375     | 0.02      | 0.02      |
| ColeBrook        | Cole676u                     | 50.66 | 50.665   | 50.665     | 0.00      | 0.00      | SouthKen         | KS1261us     | 53.24            | 53.271 | 53.271     | 0.03      | 0.03      |
| ColeBrook        | ST30Bus                      | 50.66 | 50.665   | 50.665     | 0.00      | 0.00      | SouthKen         | Culvrtus     | 53.24            | 53.271 | 53.271     | 0.03      | 0.03      |
| ColeBrook        | ST30Bds                      | 50.46 | 50.462   | 50.463     | 0.00      | 0.00      | SouthKen         | Culvrtds     | 52.69            | 52.75  | 52.75      | 0.06      | 0.06      |
| ColeBrook        | Spill3us                     | 50.66 | 50.665   | 50.665     | 0.00      | 0.00      | SouthKen         | Spillus      | 53.24            | 53.271 | 53.271     | 0.03      | 0.03      |
| ColeBrook        | Spill3ds                     | 50.14 | 50.137   | 50.139     | 0.00      | 0.00      | SouthKen         | Spillds      | 52.69            | 52.75  | 52.75      | 0.06      | 0.06      |
| ColeBrook        | Cole676d                     | 50.46 | 50.462   | 50.463     | 0.00      | 0.00      | SouthKen         | KS1261ds     | 52.69            | 52.75  | 52.75      | 0.06      | 0.06      |
| ColeBrook        | Cole649u                     | 50.44 | 50.44    | 50.44      | 0.00      | 0.00      | SouthKen         | KS1172       | 51.78            | 51.813 | 51.813     | 0.04      | 0.04      |
| ColeBrook        | Cole649d                     | 49.74 | 49.738   | 49.738     | -0.01     | -0.01     | SouthKen         | KS1172_1     | 51.06            | 50.886 | 50.886     | -0.17     | -0.17     |
| ColeBrook        | Cole649d_1                   | 49.45 | 49.432   | 49.432     | -0.02     | -0.02     | SouthKen         | KS0835       | 50.91            | 50.282 | 50.282     | -0.62     | -0.62     |
| ColeBrook        | Cole649d_2                   | 49.05 | 49.067   | 49.081     | 0.02      | 0.03      | SouthKen         | KS0785       | 50.90            | 50.234 | 50.233     | -0.67     | -0.67     |
| ColeBrook        | Cole649d_3                   | 48.83 | 48.833   | 48.834     | 0.01      | 0.01      | SouthKen         | KS0720       | 50.90            | 50.187 | 50.185     | -0.71     | -0.71     |
| ColeBrook        | Cole0474                     | 48.42 | 48.413   | 48.413     | 0.00      | 0.00      | SouthKen         | KS0491       | 49.97            | 49.901 | 49.998     | -0.07     | 0.03      |
| ColeBrook        | Cole0474_1                   | 48.10 | 48.088   | 48.139     | -0.01     | 0.04      | SouthKen         | KS0491_1     | 49.93            | 49.893 | 49.984     | -0.04     | 0.05      |
| ColeBrook        | Cole420u                     | 48.05 | 48.016   | 48.072     | -0.03     | 0.02      | SouthKen         | KS0491_2     | 49.93            | 49.892 | 49.982     | -0.04     | 0.05      |
| ColeBrook        | Cole420d                     | 47.88 | 47.824   | 47.904     | -0.05     | 0.03      | SouthKen         | KS0243       | 49.93            | 49.892 | 49.982     | -0.04     | 0.05      |
| ColeBrook        | Cole420d_1                   | 47.82 | 47.788   | 47.849     | -0.03     | 0.03      | SouthKen         | KS0243_1     | 49.93            | 49.892 | 49.982     | -0.04     | 0.05      |
| ColeBrook        | Cole420d_2                   | 47.82 | 47.787   | 47.847     | -0.03     | 0.03      | SouthKen         | KS0243_2     | 49.93            | 49.892 | 49.982     | -0.04     | 0.05      |
| ColeBrook        | Cole420d_3                   | 47.82 | 47.787   | 47.847     | -0.03     | 0.03      | SouthKen         | KS000        | 49.93            | 49.892 | 49.982     | -0.04     | 0.05      |
| ColeBrook        | Cole260                      | 47.82 | 47.787   | 47.847     | -0.03     | 0.03      | StAndrewsStream  | SA0935       | 61.36            | 61.348 | 61.34      | -0.01     | -0.01     |
| ColeBrook        | Cole260_1                    | 47.82 | 47.787   | 47.847     | -0.03     | 0.03      | StAndrewsStream  | SA0935_1     | 61.01            | 60.997 | 60.988     | -0.01     | -0.02     |
| ColeBrook        | Cole260_2                    | 47.82 | 47.787   | 47.847     | -0.03     | 0.03      | StAndrewsStream  | SA0935_2     | 60.67            | 60.66  | 60.645     | -0.01     | -0.03     |
| ColeBrook        | Cole260_3                    | 47.82 | 47.787   | 47.847     | -0.03     | 0.03      | StAndrewsStream  | SA0935_3     | 60.34            | 60.332 | 60.317     | -0.01     | -0.03     |
| ColeBrook        | Cole0000                     | 47.82 | 47.787   | 47.847     | -0.03     | 0.03      | StAndrewsStream  | SA0935_4     | 60.07            | 60.065 | 60.044     | -0.01     | -0.03     |
| HeronsBankStream | Heron0540                    | 56.53 | 56.552   | 56.552     | 0.02      | 0.02      | StAndrewsStream  | SA0935_5     | 59.94            | 59.932 | 59.9       | -0.01     | -0.04     |
| HeronsBankStream | Heron0272                    | 55.56 | 55.877   | 55.878     | 0.32      | 0.32      | StAndrewsStream  | SA0777       | 59.89            | 59.881 | 59.843     | -0.01     | -0.04     |
| HeronsBankStream | Heron0110us                  | 55.52 | 55.869   | 55.871     | 0.35      | 0.35      | StAndrewsStream  | SA0777_1     | 59.82            | 59.81  | 59.76      | -0.01     | -0.06     |
| HeronsBankStream | culvertus                    | 55.52 | 55.869   | 55.871     | 0.35      | 0.35      | StAndrewsStream  | SA0777_2     | 59.71            | 59.701 | 59.643     | -0.01     | -0.06     |

|                 |            | 2002 maximum | Latest h | ydrology | Diffe     | rence     |                 |            | 2002 maximum | Latest h | /drology | Differ    | rence     |
|-----------------|------------|--------------|----------|----------|-----------|-----------|-----------------|------------|--------------|----------|----------|-----------|-----------|
| Watercourse     | Node       | level        | 5 hour   | 14 hour  | 5 hour    | 14 hour   | Watercourse     | Node       | level        | 5 hour   | 14 hour  | 5 hour    | 14 hour   |
|                 |            | (a)          | (b)      | (C)      | (b) - (a) | (c) - (a) |                 |            | (a)          | (b)      | (C)      | (b) - (a) | (c) - (a) |
| StAndrewsStream | SA0664     | 59.45        | 59.426   | 59.384   | -0.03     | -0.07     | StAndrewsStream | SA125us_2  | 53.06        | 53.063   | 53.079   | 0.01      | 0.02      |
| StAndrewsStream | INT0610    | 58.98        | 58.914   | 58.893   | -0.06     | -0.08     | StAndrewsStream | SA125ds    | 52.92        | 52.93    | 52.954   | 0.01      | 0.04      |
| StAndrewsStream | INT0555    | 58.56        | 58.524   | 58.503   | -0.04     | -0.06     | StAndrewsStream | Sp125us    | 53.36        | 53.357   | 53.358   | -0.01     | -0.01     |
| StAndrewsStream | INT0500    | 58.27        | 58.14    | 58.126   | -0.13     | -0.14     | StAndrewsStream | Sp125ds    | 52.92        | 52.93    | 52.954   | 0.01      | 0.04      |
| StAndrewsStream | SA0445     | 57.62        | 57.605   | 57.588   | -0.02     | -0.03     | StAndrewsStream | SA0052     | 52.92        | 52.93    | 52.954   | 0.01      | 0.04      |
| StAndrewsStream | SA0415     | 57.07        | 57.051   | 57.037   | -0.02     | -0.03     | StAndrewsStream | SA0025     | 52.91        | 52.925   | 52.95    | 0.02      | 0.04      |
| StAndrewsStream | SA0415_1   | 56.84        | 56.833   | 56.823   | -0.01     | -0.02     | StAndrewsStream | SA0000     | 52.91        | 52.925   | 52.949   | 0.02      | 0.04      |
| StAndrewsStream | SA0380     | 56.78        | 56.771   | 56.763   | -0.01     | -0.02     | StAndrewsStream | RES1A      | 0.00         | 0.001    | 0.001    | 0.00      | 0.00      |
| StAndrewsStream | SA0380_1   | 56.80        | 56.792   | 56.782   | -0.01     | -0.02     | StAndrewsStream | RES1B      | 0.00         | 0.001    | 0.001    | 0.00      | 0.00      |
| StAndrewsStream | SA0373us   | 56.79        | 56.781   | 56.771   | -0.01     | -0.02     | StAndrewsStream | RES1C      | 0.00         | 0.001    | 0.001    | 0.00      | 0.00      |
| StAndrewsStream | SA0373ds   | 56.67        | 56.663   | 56.659   | 0.00      | -0.01     | StAndrewsStream | RES1D      | 0.00         | 0.001    | 0.001    | 0.00      | 0.00      |
| StAndrewsStream | SA0360     | 56.64        | 56.64    | 56.638   | 0.00      | -0.01     | StAndrewsStream | RES1E      | 0.00         | 0.001    | 0.001    | 0.00      | 0.00      |
| StAndrewsStream | SA0360us   | 56.64        | 56.64    | 56.638   | 0.00      | -0.01     | StAndrewsStream | RES1F      | 0.00         | 0.001    | 0.001    | 0.00      | 0.00      |
| StAndrewsStream | SA0360us_1 | 56.36        | 56.349   | 56.344   | -0.01     | -0.02     | StAndrewsStream | RES1G      | 0.00         | 0.001    | 0.001    | 0.00      | 0.00      |
| StAndrewsStream | SA0360us_2 | 56.07        | 56.057   | 56.051   | -0.02     | -0.02     | CrowGreenStream | Crow2496   | 70.77        | 70.708   | 70.658   | -0.06     | -0.11     |
| StAndrewsStream | SA0360ds   | 55.79        | 55.765   | 55.757   | -0.02     | -0.03     | CrowGreenStream | Crow1945   | 63.21        | 63.187   | 63.168   | -0.02     | -0.04     |
| StAndrewsStream | Sp360us    | 56.64        | 56.64    | 56.638   | 0.00      | -0.01     | CrowGreenStream | Crow1667   | 60.26        | 60.269   | 60.203   | 0.01      | -0.06     |
| StAndrewsStream | Sp360ds    | 55.79        | 55.765   | 55.757   | -0.02     | -0.03     | CrowGreenStream | Cr1652us   | 60.06        | 60.112   | 60.057   | 0.05      | 0.00      |
| StAndrewsStream | SA0300     | 55.79        | 55.765   | 55.757   | -0.02     | -0.03     | CrowGreenStream | CGSpill1us | 60.06        | 60.112   | 60.057   | 0.05      | 0.00      |
| StAndrewsStream | INT261     | 55.24        | 55.215   | 55.21    | -0.03     | -0.03     | CrowGreenStream | CGSpill2ds | 57.91        | 57.906   | 57.906   | 0.00      | 0.00      |
| StAndrewsStream | SA0222us   | 54.82        | 54.819   | 54.815   | 0.00      | -0.01     | CrowGreenStream | CGWeirus   | 60.06        | 60.112   | 60.057   | 0.05      | 0.00      |
| StAndrewsStream | 222us      | 54.82        | 54.819   | 54.815   | 0.00      | -0.01     | CrowGreenStream | Crow1651   | 60.03        | 60.102   | 60.047   | 0.07      | 0.01      |
| StAndrewsStream | 222ds      | 54.72        | 54.72    | 54.716   | 0.00      | -0.01     | CrowGreenStream | ST29us     | 60.03        | 60.102   | 60.047   | 0.07      | 0.01      |
| StAndrewsStream | Sp222us    | 54.82        | 54.819   | 54.815   | 0.00      | -0.01     | CrowGreenStream | ST28ds     | 57.22        | 56.918   | 56.914   | -0.30     | -0.30     |
| StAndrewsStream | Sp222ds    | 54.72        | 54.72    | 54.716   | 0.00      | -0.01     | CrowGreenStream | Crow1394   | 56.82        | 56.653   | 56.65    | -0.16     | -0.17     |
| StAndrewsStream | SA0222ds   | 54.72        | 54.72    | 54.716   | 0.00      | -0.01     | CrowGreenStream | Crow1384   | 56.61        | 56.526   | 56.523   | -0.08     | -0.09     |
| StAndrewsStream | SA0196     | 54.30        | 54.291   | 54.287   | -0.01     | -0.01     | CrowGreenStream | Crow1354   | 56.38        | 56.146   | 56.143   | -0.23     | -0.23     |
| StAndrewsStream | INT176     | 54.03        | 54.024   | 54.019   | -0.01     | -0.01     | CrowGreenStream | Crow1289   | 55.72        | 55.682   | 55.679   | -0.04     | -0.04     |
| StAndrewsStream | INT156     | 53.86        | 53.852   | 53.847   | 0.00      | -0.01     | CrowGreenStream | Crow1201   | 54.83        | 54.732   | 54.729   | -0.09     | -0.10     |
| StAndrewsStream | SA0136us   | 53.81        | 53.804   | 53.8     | 0.00      | -0.01     | CrowGreenStream | 1126us     | 54.48        | 54.327   | 54.296   | -0.15     | -0.18     |
| StAndrewsStream | 136us      | 53.81        | 53.804   | 53.8     | 0.00      | -0.01     | CrowGreenStream | ST27us     | 54.48        | 54.327   | 54.296   | -0.15     | -0.18     |
| StAndrewsStream | 136ds      | 53.49        | 53.487   | 53.484   | 0.00      | -0.01     | CrowGreenStream | ST27ds     | 54.40        | 54.267   | 54.243   | -0.13     | -0.16     |
| StAndrewsStream | Sp136us    | 53.81        | 53.804   | 53.8     | 0.00      | -0.01     | CrowGreenStream | Sp27us     | 54.48        | 54.327   | 54.296   | -0.15     | -0.18     |
| StAndrewsStream | Sp136ds    | 53.49        | 53.487   | 53.484   | 0.00      | -0.01     | CrowGreenStream | Sp27ds     | 54.40        | 54.267   | 54.243   | -0.13     | -0.16     |
| StAndrewsStream | SA0136ds   | 53.49        | 53.487   | 53.484   | 0.00      | -0.01     | CrowGreenStream | 1126ds     | 54.40        | 54.267   | 54.243   | -0.13     | -0.16     |
| StAndrewsStream | INT131     | 53.41        | 53.409   | 53.407   | -0.01     | -0.01     | CrowGreenStream | Crow1118   | 54.31        | 54.195   | 54.171   | -0.12     | -0.14     |
| StAndrewsStream | SA0125     | 53.36        | 53.357   | 53.358   | -0.01     | -0.01     | CrowGreenStream | Crow0971   | 52.98        | 52.784   | 52.753   | -0.19     | -0.23     |
| StAndrewsStream | SA125us    | 53.36        | 53.357   | 53.358   | -0.01     | -0.01     | CrowGreenStream | 0971ds     | 52.56        | 52.28    | 52.244   | -0.28     | -0.31     |
| StAndrewsStream | SA125us_1  | 53.20        | 53.204   | 53.214   | 0.00      | 0.01      | CrowGreenStream | Crow0960   | 52.49        | 52.193   | 52.154   | -0.30     | -0.34     |

|                 |            | 2002 maximum | Latest hydrology |         | Difference |           |                 |            | 2002 maximum | Latest hydrology |         | Difference |           |
|-----------------|------------|--------------|------------------|---------|------------|-----------|-----------------|------------|--------------|------------------|---------|------------|-----------|
| Watercourse     | Node       | level        | 5 hour           | 14 hour | 5 hour     | 14 hour   | Watercourse     | Node       | level        | 5 hour           | 14 hour | 5 hour     | 14 hour   |
|                 |            | (a)          | (b)              | (C)     | (b) - (a)  | (c) - (a) |                 |            | (a)          | <i>(b)</i>       | (C)     | (b) - (a)  | (c) - (a) |
| CrowGreenStream | 0960ds     | 52.36        | 52.106           | 52.071  | -0.26      | -0.29     | NorthKen        | Culvrt22us | 53.46        | 53.468           | 53.468  | 0.01       | 0.01      |
| CrowGreenStream | Crow0940   | 52.30        | 52.006           | 51.962  | -0.30      | -0.34     | NorthKen        | Culvrt22ds | 53.20        | 53.21            | 53.21   | 0.01       | 0.01      |
| CrowGreenStream | C-in       | 52.30        | 52.006           | 51.962  | -0.30      | -0.34     | NorthKen        | Spill22us  | 53.46        | 53.468           | 53.468  | 0.01       | 0.01      |
| CrowGreenStream | ST26Aus    | 52.27        | 51.979           | 51.939  | -0.29      | -0.33     | NorthKen        | Spill22ds  | 53.20        | 53.21            | 53.21   | 0.01       | 0.01      |
| CrowGreenStream | ST26Ads    | 52.17        | 51.91            | 51.878  | -0.26      | -0.29     | NorthKen        | ST22ds     | 53.20        | 53.21            | 53.21   | 0.01       | 0.01      |
| CrowGreenStream | ST26Bus    | 52.13        | 51.884           | 51.854  | -0.24      | -0.27     | NorthKen        | NK0763     | 53.03        | 53.044           | 53.044  | 0.01       | 0.01      |
| CrowGreenStream | ST26Bds    | 52.03        | 51.815           | 51.793  | -0.22      | -0.24     | NorthKen        | NK0763_1   | 52.61        | 52.54            | 52.54   | -0.07      | -0.07     |
| CrowGreenStream | Crow0900   | 52.00        | 51.8             | 51.782  | -0.20      | -0.21     | NorthKen        | NK0454     | 51.94        | 51.987           | 51.986  | 0.05       | 0.05      |
| CrowGreenStream | Crow0865   | 51.96        | 51.623           | 51.602  | -0.34      | -0.36     | NorthKen        | NK0260     | 51.24        | 51.117           | 51.147  | -0.12      | -0.09     |
| CrowGreenStream | Cr0794us   | 51.08        | 51.024           | 51.008  | -0.05      | -0.07     | NorthKen        | ST04us     | 50.88        | 50.754           | 50.857  | -0.12      | -0.02     |
| CrowGreenStream | CGweirus   | 51.08        | 60.112           | 60.057  | 9.04       | 8.98      | NorthKen        | ST04ds     | 50.70        | 50.667           | 50.703  | -0.04      | 0.00      |
| CrowGreenStream | Cr0794ds   | 50.76        | 50.657           | 50.634  | -0.10      | -0.12     | NorthKen        | NK000      | 50.70        | 50.663           | 50.696  | -0.03      | 0.00      |
| CrowGreenStream | Crow0775   | 50.65        | 50.533           | 50.51   | -0.12      | -0.14     | CrowGreenStream | Urban2     | 54.48        | 54.732           | 54.729  | 0.26       | 0.25      |
| CrowGreenStream | Cr0664us   | 49.79        | 49.734           | 49.696  | -0.05      | -0.09     | CrowGreenStream | Urban3     | 50.73        | 50.525           | 50.459  | -0.20      | -0.27     |
| CrowGreenStream | Crow0664   | 49.79        | 49.734           | 49.696  | -0.05      | -0.09     | CrowGreenStream | Urban4     | 49.79        | 49.734           | 49.696  | -0.05      | -0.09     |
| CrowGreenStream | Cr0490us   | 48.93        | 48.939           | 48.885  | 0.01       | -0.05     |                 |            |              |                  |         |            |           |
| CrowGreenStream | 0490us     | 48.93        | 48.939           | 48.885  | 0.01       | -0.05     |                 |            |              |                  |         |            |           |
| CrowGreenStream | 0490ds     | 48.70        | 48.719           | 48.666  | 0.02       | -0.04     |                 |            |              |                  |         |            |           |
| CrowGreenStream | Sp490us    | 48.93        | 48.939           | 48.885  | 0.01       | -0.05     |                 |            |              |                  |         |            |           |
| CrowGreenStream | Sp490ds    | 48.70        | 48.719           | 48.666  | 0.02       | -0.04     |                 |            |              |                  |         |            |           |
| CrowGreenStream | Cr0490ds   | 48.70        | 48.719           | 48.666  | 0.02       | -0.04     |                 |            |              |                  |         |            |           |
| CrowGreenStream | Crow0350   | 48.06        | 48.014           | 48.078  | -0.05      | 0.02      |                 |            |              |                  |         |            |           |
| CrowGreenStream | Crow0350_1 | 48.03        | 48.007           | 48.068  | -0.03      | 0.03      |                 |            |              |                  |         |            |           |
| CrowGreenStream | Crow0350_2 | 48.03        | 48.007           | 48.068  | -0.02      | 0.04      |                 |            |              |                  |         |            |           |
| CrowGreenStream | Crow0120   | 48.03        | 48.006           | 48.067  | -0.03      | 0.04      |                 |            |              |                  |         |            |           |
| CrowGreenStream | Crow0120_1 | 48.03        | 48.006           | 48.067  | -0.03      | 0.04      |                 |            |              |                  |         |            |           |
| CrowGreenStream | Crow0120_2 | 48.03        | 48.006           | 48.067  | -0.03      | 0.04      |                 |            |              |                  |         |            |           |
| CrowGreenStream | Crow0000   | 48.03        | 48.006           | 48.067  | -0.03      | 0.04      |                 |            |              |                  |         |            |           |
| CrowGreenStream | Relief1    | 51.08        | 51.024           | 51.008  | -0.05      | -0.07     |                 |            |              |                  |         |            |           |
| CrowGreenStream | Reliefus   | 50.73        | 50.525           | 50.459  | -0.20      | -0.27     |                 |            |              |                  |         |            |           |
| CrowGreenStream | Reliefds   | 50.73        | 50.525           | 50.459  | -0.20      | -0.27     |                 |            |              |                  |         |            |           |
| CrowGreenStream | Relief2    | 49.27        | 49.245           | 49.172  | -0.03      | -0.10     |                 |            |              |                  |         |            |           |
| CrowGreenStream | Relief3    | 48.21        | 48.191           | 48.248  | -0.02      | 0.03      |                 |            |              |                  |         |            |           |
| CrowGreenStream | Sp0940     | 52.30        | 52.006           | 51.962  | -0.30      | -0.34     | l               |            |              |                  |         |            |           |
| CrowGreenStream | Sp0900     | 51.62        | 51.621           | 51.621  | 0.00       | 0.00      |                 |            |              |                  |         |            |           |
| CrowGreenStream | ReliefRs   | 48.86        | 48.858           | 48.859  | 0.00       | 0.00      | ]               |            |              |                  |         |            |           |
| NorthKen        | NK0889     | 53.83        | 53.839           | 53.839  | 0.01       | 0.01      | ]               |            |              |                  |         |            |           |
| NorthKen        | NK0889_1   | 53.55        | 53.561           | 53.561  | 0.01       | 0.01      |                 |            |              |                  |         |            |           |
| NorthKen        | ST22us     | 53.46        | 53.468           | 53.468  | 0.01       | 0.01      |                 |            |              |                  |         |            |           |

This Page Intentionally Left Blank

Recommended improvements to the existing ISIS model

This Page Intentionally Left Blank

#### Table A4-1. Recommended improvements

**Note:** improvements highlighted in grey have already been completed at no extra cost, whilst those highlighted in green will be addressed through the linkage of the ISIS model to a 2D representation of the floodplain and, hence, are covered by our original scope of works

Ref.

#### **Recommended improvement**

**Essential changes** – Improvements 1 to 17 are considered essential to correct serious errors in the existing hydraulic model and ensure that appropriate ISIS units are used to represent key structures and flood mechanisms. These improvements should be seen as 'bare minimum' or 'must do' items.

| 1  | The modelled sections should be extended where they suddenly reduce in width at structures                                                                        |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | The sluices in the model need weir lengths in the units as this field has been added to the unit since the model was built                                        |
| 3  | The invert levels of Bernoulli loss units should be checked as they do not match the surveyed levels in the sections upstream and downstream                      |
| 4  | Overtopping levels of structures should be examined and bypass spills added where necessary                                                                       |
| 5  | Sections which have been extended using 1:25,000 map contours will need to be trimmed down to their surveyed widths and re-extended using LiDAR data              |
| 6  | Extended sections which have been smoothed should have their surveyed data reinstated.                                                                            |
| 7  | Where necessary extended sections need to be trimmed to high points and the area beyond the high points needs to be represented as parallel channels              |
| 8  | The slots in parallel channels need to be resized appropriately for the dummy flows used                                                                          |
| 9  | Connectivity needs to be added between the parallel channels                                                                                                      |
| 10 | Seven reservoirs (Spill1ds, Spill2ds, Spill3ds, RES1A, CGSpill2ds, Sp0900, ReliefRs) need to be re-schematised.                                                   |
| 11 | Glass walling sections need appropriate floodplain representation                                                                                                 |
| 12 | Lateral spills need to be re-schematised                                                                                                                          |
| 13 | Spill coefficients of several lateral spills (MS1364LB to MS2167LB) need to be examined and altered if necessary                                                  |
| 14 | Complex interaction between bypass channel and floodplain should be examined and corrected if necessary                                                           |
| 15 | Model run parameters need to be defined                                                                                                                           |
| 16 | Model convergence issues and instabilities need to be examined and corrected wherever possible                                                                    |
| 17 | The FEH statistical method should be used to derive peak flow frequency estimates for the Crow Green Stream, St. Andrew's Well Stream and St. Georges Well Stream |
|    |                                                                                                                                                                   |

18 Slots in River Sections in the main channels should be removed if possible

- 19 Additional interpolates should be added to reduce the distance between nodes so that it is more appropriate for the channel slopes
- 20 Manning's 'n' values should be examined, with additional information, for appropriateness and adjusted if necessary
- 21 The stage discharge relationship at the downstream end of the model should be examined to ensure it is appropriate
- 22 The 'p' levels at structures in the model should be examined and corrected where necessary
- 23 The choice of unit for culverts, bridges and orifices should be examined and altered if necessary
- 24 Dummy flows need to be abstracted from the model
- 25 Flat spills should be adjusted by 1mm to reduce model non-convergence and "noise"

**Suggested improvements** - Improvements 26 to 33 are also suggested but are not considered essential for the satisfactory completion of the FRA.

| 26 | The hydrology should be imported into .ied files and just one model .dat file used to reduce the amount of files and |
|----|----------------------------------------------------------------------------------------------------------------------|
|    | storage space                                                                                                        |
|    | The intermediate hydrological boundaries should be assessed to see if they would better represent the catchment      |

27 Intermediate hydrological boundaries should be assessed to see in they would better represent the catching hydrology by being distributed over the length of a reach

28 Orifice units representing bridges should be replaced with bridge units where it is more appropriate to use orifice units

29 Culverts should have entry and exit loss units

30 Irregular culverts modelling regular shapes should be converted to the appropriate shape

31 Reduce dummy flows to minimise impacts on floodplain

32 Geo-referencing information should be created for every section

33 A GXY visualiser should be created to allow better visualisation of the model